Skip Nav Destination
Close Modal
Search Results for
chromium-molybdenum steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 517 Search Results for
chromium-molybdenum steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1995
Fig. 24-8 Chromium-Molybdenum Steel 4130; Chemical composition. AISI and UNS: Nominal 0.28 to 0.33 C, 0.40 to 0.60 Mn, 0.035 P max, 0.40 S max, 0.15 to 0.30 Si, 0.80 to 1.10 Cr, 0.15 to 0.25 Mo
More
Image
Published: 01 September 2005
Fig. 15 Microhardness profiles of EN 19 chromium-molybdenum steel produced by controlled and conventional gas nitriding processes. Source: Ref 5
More
Image
Published: 01 August 2013
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130587
EISBN: 978-1-62708-284-6
... Abstract This appendix is a collection of isothermal diagrams for carbon steels, chromium-molybdenum steels, nickel-chromium-molybdenum steels, nickel-molybdenum steels, and chromium steels. isothermal diagrams carbon steels chromium-molybdenum steels nickel-chromium-molybdenum steels...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310095
EISBN: 978-1-62708-326-3
..., free-machining carbon steels, low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, and low-alloy silicon-manganese steels. The chapter provides...
Abstract
This chapter describes the designations of carbon and low-alloy steels and their general characteristics in terms of their response to hardening and mechanical properties. The steels covered are low-carbon steels, higher manganese carbon steels, boron-treated carbon steels, H-steels, free-machining carbon steels, low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, and low-alloy silicon-manganese steels. The chapter provides information on residual elements, microalloying, grain refinement, mechanical properties, and grain size of these steels. In addition, the effects of free-machining additives are also discussed.
Image
Published: 01 December 1995
Image
Published: 01 December 1995
Image
Published: 01 October 2011
Fig. 8.11 Effect of temperature on tensile and yield strength of two low-carbon steels and some common low-carbon chromium-molybdenum steels. Source: Ref 8.1
More
Image
in Sources of Failures in Carburized and Carbonitrided Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 44 Dependence of the carbon gradient as a function of case depth for three carburized steels that were carburized under the same conditions: 925 °C and 10 h. 1, chromium-molybdenum steel (0.56% Cr, 0.16% Mo); 2, carbon steel; 3, nickel steel (3.5% Ni)
More
Image
Published: 01 December 2003
Fig. 12 Examples of oxynitrided piston rods. Center rod: before treatment. Two rods at left: untreated and subjected to salt spray testing. Two rods at right: treated, then subjected to salt spray testing. Material is similar to UNS G41400 and H41400 chromium-molybdenum steels. Courtesy
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240371
EISBN: 978-1-62708-251-8
... Abstract Alloy steels are alloys of iron with the addition of carbon and one or more of the following elements: manganese, chromium, nickel, molybdenum, niobium, titanium, tungsten, cobalt, copper, vanadium, silicon, aluminum, and boron. Alloy steels exhibit superior mechanical properties...
Abstract
Alloy steels are alloys of iron with the addition of carbon and one or more of the following elements: manganese, chromium, nickel, molybdenum, niobium, titanium, tungsten, cobalt, copper, vanadium, silicon, aluminum, and boron. Alloy steels exhibit superior mechanical properties compared to plain carbonsteels as a result of alloying additions. This chapter describes the beneficial effects of these alloying elements in steels. It discusses the mechanical properties, nominal compositions, advantages, and engineering applications of various classes of alloy steels. They are low-alloy structural steels, SAE/AISI alloy steels, high-fracture-toughness steels, maraging steels, austenitic manganese steels, high-strength low-alloy steels, dual-phase steels, and transformation-induced plasticity steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060175
EISBN: 978-1-62708-261-7
... of selected alloying elements such as manganese, silicon, chromium, nickel, sulfur, molybdenum, vanadium, niobium, and tungsten as well as other alloy/impurity elements that impart specific properties. The many varieties of steels cover a wide range of applications and product forms. Examples of steels...
Abstract
This chapter describes the classification of steels and the various compositional categories of commercial steel products. It explains how different alloying elements affect the properties of carbon and low-alloys steels and discusses strength, toughness, and corrosion resistance and how to improve them.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170123
EISBN: 978-1-62708-297-6
...-chromium steels 31 xx Ni 1.25; Cr 0.65 and 0.80 32 xx Ni 1.75; Cr 1.07 33 xx Ni 3.50; Cr 1.50 and 1.57 34 xx Ni 3.00; Cr 0.77 Molybdenum steels 40 xx Mo 0.20 and 0.25 44 xx Mo 0.40 and 0.52 Chromium-molybdenum steels 41 xx Cr 0.50, 0.80, and 0.95; Mo 0.12, 0.20...
Abstract
This article discusses the role of alloying in the production and use of carbon and low-alloy steels. It explains how steels are defined and selected based on alloy content and provides composition and property data for a wide range of designations and grades. It describes the effect of alloying on structure and composition and explains how alloy content can be controlled to optimize properties and behaviors such as ductility, strength, toughness, fatigue and fracture resistance, and resistance to corrosion, wear, and high-temperature creep. It also examines the effect of alloying on processing characteristics such as hardenability, formability, weldability, machinability, and temper embrittlement. In addition, the article provides an extensive amount of engineering data with relevance in materials selection.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170242
EISBN: 978-1-62708-297-6
.... This grade has been used in scoop lips, ball mill end liners, discharge grates, and grizzly screens for siliceous ore milling. One record indicates 45% longer life in ball mill discharge grates compared to pearlitic chromium-molybdenum steel used previously. Average properties reported were 415 MPa (60 ksi...
Abstract
This article provides an overview of austenitic manganese steels. It describes the standard composition ranges of commercial products and explains how various alloying elements affect mechanical properties, processing, and performance. The article also discusses special grades of manganese steels and the types of applications for which they have been developed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130601
EISBN: 978-1-62708-284-6
... carbon steels manganese steels silicon steels nickel steels nickel-chromium-molybdenum steels chromium steels Selected continuous cooling transformation diagrams for: Carbon steels with nominal carbon contents of 0.8, 0.44, 0.86, 0.96 wt% C Mn steels (1¾M, 1½Mn) Mn-Mo, Mn-Ce, Mn-Ni...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410001
EISBN: 978-1-62708-265-5
... Ni 5.00 Nickel-chromium steels 31 xx Ni 1.25; Cr 0.65 and 0.80 32 xx Ni 1.75; Cr 1.07 33 xx Ni 3.50; Cr 1.50 and 1.57 34 xx Ni 3.00; Cr 0.77 Molybdenum steels 41 xx Cr 0.50, 0.80, and 0.95; Mo 0.12, 0.20, 0.25, and 0.30 Nickel-chromium-molybdenum steels 43...
Abstract
This chapter provides perspective on the physical dimensions associated with the microstructure of steel and the instruments that reveal grain size, morphology, phase distributions, crystal defects, and chemical composition, from which properties and behaviors derive. The chapter also reviews the definitions and classifications used to identify and differentiate commercial steels, including the AISI/SAE and UNS designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200311
EISBN: 978-1-62708-354-6
... microstructures on the toughness of cast chromium-manganese-molybdenum steel ( 11 ) Chromium Chromium has variously been reported to have either a slightly positive or slightly negative effect on toughness. It is generally added to improve hardenability, and therefore can lead to the desirable...
Abstract
This chapter defines low-temperature and cryogenic steels and describes their alloy classifications and their ambient and low-temperature properties. These steels include ferritic carbon and low alloy steels, martensitic low alloy steels, martensitic high alloy steels, and austenitic high alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170257
EISBN: 978-1-62708-297-6
... chromium and molybdenum contents. At these low effective carbon levels, these grades are tougher and more weldable than the first generation of ferritic stainless steels. Nevertheless, their limited toughness generally restricts use of these grades to sheet or lighter-gage tubulars. Ferritic stainless...
Abstract
This article covers the metallurgy and properties of stainless steels. It provides composition information on all types of ferritic, austenitic, martensitic, duplex, and precipitation-hardening stainless steels, including proprietary and nonstandard grades, along with corresponding property and performance data. It also discusses the effect of various alloying elements on pitting, crevice corrosion, sensitization, stress-corrosion cracking, and oxidation resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310001
EISBN: 978-1-62708-286-0
... simultaneously. Stainless steel is an exceptional alloy system in that it is not a dilute solution. Alloy steels may contain several percent of alloying elements, such as carbon, manganese, nickel, molybdenum, chromium, and silicon, in addition to the impurities sulfur, oxygen, and phosphorus. Alloy steels...
Abstract
Metallurgy, as discussed in this chapter, focuses on phases normally encountered in stainless steels and their characteristics. This chapter describes the thermodynamics and the three basic phases of stainless steels: ferrite, austenite, and martensite. Formation of the principal intermetallic phases is also covered. In addition, the chapter provides information on carbides, nitrides, precipitation hardening, and inclusions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440125
EISBN: 978-1-62708-262-4
...% A steel is also classified as an alloy steel when a difinite range or a definite minimum quantity of any of the following elements is specified or required within recognized limits: Aluminum Boron Chromium (up to 3.99%) Cobalt Molybdenum Nickel Niobium Titanium Tungsten...
Abstract
This chapter discusses the fundamentals of heat treating of alloy steels. It begins with an overview of the designations of AISI-SAE grades of alloy steels, followed by a description of the purposes served by alloying elements. The effects of specific alloying elements on the heat treatment of alloy steels and of boron on hardenability of alloy steels are then discussed. Procedures for heat treating four specific alloy steels (4037, 4037H; 4140, 4140H; 4340, 4340; and E52100) are subsequently presented. The chapter concludes with a brief account of austempering and martempering treatments.
1