Skip Nav Destination
Close Modal
Search Results for
chemical vapor deposition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 327 Search Results for
chemical vapor deposition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 July 2009
Fig. 22.32 Schematic illustration of a typical chemical vapor deposition system. Source: Pierson 1999
More
Image
Published: 01 August 2012
Fig. 16.17 Residual stresses caused by surface features in chemical vapor deposition or physical vapor deposition coating. (a) Ideal case. (b) Edge. (c) Coating edge. (d) Groove. (e) Ridge. Source: Ref 16.56
More
Image
Published: 01 August 2012
Fig. 16.20 Chemical vapor deposition coating applied to a stamping die for truck bumpers. Source: Ref 16.6
More
Image
Published: 01 November 2010
Image
Published: 01 November 2010
Image
Published: 01 December 2006
Fig. 7.127 Left, chemical vapor deposition (CVD)-coated aluminum extrusion dies. Right, demanding heat exchanger sections in AlMgSi0.5 produced with CVD–coated dies. Source: WEFA Singen Gmbh
More
Image
Published: 01 October 2011
Fig. 11.10 Hardness of various physical vapor deposition (PVD) coatings and chemical vapor deposition (CVD) coatings used for tooling materials. Source: Ref 11.9
More
Book Chapter
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060001
EISBN: 978-1-62708-440-6
... techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD...
Abstract
This chapter presents the theory and practice associated with the application of thin films. The first half of the chapter describes physical deposition processes in which functional coatings are deposited on component surfaces using mechanical, electromechanical, or thermodynamic techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
... This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy...
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230361
EISBN: 978-1-62708-298-3
... Abstract This chapter discusses coating technologies that are applicable to beryllium, including physical and chemical vapor deposition, thermal evaporation, electroplating, sputtering, ion plating, and plasma arc spraying. It describes the advantages and disadvantages of each method...
Abstract
This chapter discusses coating technologies that are applicable to beryllium, including physical and chemical vapor deposition, thermal evaporation, electroplating, sputtering, ion plating, and plasma arc spraying. It describes the advantages and disadvantages of each method and the effect of temperature, pressure, and other process variables on the microstructures and properties developed.
Image
Published: 01 June 2008
Fig. 22.20 Hardness of coatings for tool materials. PVD, physical vapor deposition; CVD, chemical vapor deposition
More
Image
in Introduction to Surface Engineering for Corrosion and Wear Resistance
> Surface Engineering for Corrosion and Wear Resistance
Published: 01 March 2001
Fig. 2 Surface engineering processes used to prevent wear. CVD, chemical vapor deposition; PVD, physical vapor deposition; EB, electron beam
More
Image
Published: 01 August 2012
Fig. 16.14 Typical coating thicknesses and process temperature for common coating methods. CVD, chemical vapor deposition; TD, thermal diffusion; PVD, physical vapor deposition. Source: Ref 16.54
More
Image
Published: 01 August 2012
Fig. 16.3 (a) Use of inserts in a cast steel stamping die. CVD, chemical vapor deposition; PVD, physical vapor deposition. Source: Ref 16.8 . (b) Novel method of casting iron and steel. Source: Ref 16.23
More
Image
Published: 01 October 2012
Fig. 11.28 Filament-wound Nicalon tube and a braided Nextel tube before and after being processed by chemical vapor deposition/chemical vapor infiltration (CVD/CVI). Courtesy of Thermo Electron Corporation. Source: Ref 11.11
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500317
EISBN: 978-1-62708-317-1
... hardening, case (surface) hardening, and nitriding as well as hard chrome plating, vapor deposition, and thermal diffusion coating. It explains how to measure wear resistance using various tests and provides guidelines for selecting tool materials, treatments, and coatings. chemical vapor deposition...
Abstract
This chapter discusses the types of failures that can occur in sheet metal forming tools and explains how to mitigate their effects. It describes the factors that influence galling and wear and the benefits of special treatments and coatings. It provides information on through hardening, case (surface) hardening, and nitriding as well as hard chrome plating, vapor deposition, and thermal diffusion coating. It explains how to measure wear resistance using various tests and provides guidelines for selecting tool materials, treatments, and coatings.
Image
in Mechanical Properties and Testing of Titanium Alloys[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 6.35 The manufacture of continuous silicon carbide (SiC) fibers via chemical vapor deposition
More
Image
in Forming of Advanced High-Strength Steels (AHSS)
> Sheet Metal Forming: Processes and Applications
Published: 01 August 2012
Fig. 6.22 Tooling construction with tool steels as inserts in cast iron die for forming advanced high-strength steels at Volvo. CVD, chemical vapor deposition. Source: Ref 6.34
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
... Abstract Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.9781627084406
EISBN: 978-1-62708-440-6
1