Skip Nav Destination
Close Modal
Search Results for
chemical elements
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 920 Search Results for
chemical elements
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140215
EISBN: 978-1-62708-264-8
... Abstract This appendix contains the periodic table of the elements. chemical elements periodic table ...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730001
EISBN: 978-1-62708-283-9
... chloride and includes a list of structurally similar compounds. amorphous materials chemical bonding chemical elements crystal structures MATERIALS are so important to civilization that the terms stone age, bronze age , and iron age have been used to describe periods of history. Perhaps...
Abstract
This chapter discusses the foundational principles of materials science. It begins with a review of the periodic table and the fundamental particles, including atoms, ions, and molecules, that constitute matter. It also reviews the types of bonds that form between atoms and the relative levels of force they produce. It describes the difference between crystalline and noncrystalline or amorphous materials and discusses common crystal structures, including face-centered cubic, body-centered cubic, hexagonal close packed, and diamond cubic. It also describes the structure of sodium chloride and includes a list of structurally similar compounds.
Image
in Steel as a Material
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 1.4 Schematic presentation of the main effects and functions of chemical elements added to steel. In parentheses, some specific examples of each function are presented. Evidently, some elements have more than one function in the alloy design of a given steel.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220001
EISBN: 978-1-62708-259-4
... 100 nm–1000 µm Scanning electron microscopy Atom force microscopy 1–1000 µm Optical microscopy Confocal laser microscopy 1–1000 mm Macrography 1.5 Chemical Composition of Steels Besides carbon, which is not always a desirable alloying element, many chemical elements may be present...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140055
EISBN: 978-1-62708-264-8
... Abstract Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain. It explains why...
Abstract
Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain. It explains why manganese is sometimes added to steel and how unintended consequences, such as the development of sulfide stringers, can offset the benefits. It also examines the effect of alloying elements on the iron-carbon phase diagram, particularly their effect on transformation temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730159
EISBN: 978-1-62708-283-9
... Abstract This appendix contains a table listing the symbol, atomic number, atomic weight, melting temperature, density, atomic radius, and crystal structure of various elements. chemical elements atomic number atomic weight density atomic radius Elementary Materials Science William...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410001
EISBN: 978-1-62708-265-5
... elements, both beneficial and detrimental, and therefore the distribution of these elements in steel microstructures is extremely important. In electron microscopes chemical compositions of selected microstructural features are determined by high energy electron beam interactions that cause inner shell...
Abstract
This chapter provides perspective on the physical dimensions associated with the microstructure of steel and the instruments that reveal grain size, morphology, phase distributions, crystal defects, and chemical composition, from which properties and behaviors derive. The chapter also reviews the definitions and classifications used to identify and differentiate commercial steels, including the AISI/SAE and UNS designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170003
EISBN: 978-1-62708-297-6
... are seldom used in commercial applications in their pure (unalloyed) condition. Instead, one or more chemical element is normally alloyed with the base metal to alter its characteristics to make it easier to fabricate and/or perform better in the application. Although in the broad sense, alloying covers...
Abstract
This article discusses the general purpose of alloying and identifies some of the material properties and behaviors that can be improved by adding various elements to the base metal. It explains how alloying can make metals stronger and more resistant to corrosion and wear as well as easier to cast, weld, form, and machine. It also discusses some of the alloying techniques that have been developed to address problems stemming from dissimilarities between the base metal and alloying or inoculate material.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090191
EISBN: 978-1-62708-266-2
... Abstract Irradiation-assisted stress-corrosion cracking (IASCC) has been a topic of engineering interest since it was first reported in the 1960s, having been observed in stainless steel cladding on light water reactor fuel elements. This chapter summarizes the results of decades...
Abstract
Irradiation-assisted stress-corrosion cracking (IASCC) has been a topic of engineering interest since it was first reported in the 1960s, having been observed in stainless steel cladding on light water reactor fuel elements. This chapter summarizes the results of decades of investigation, showing that IASCC can essentially be defined as the intergranular cracking of austenitic alloys in high-temperature water, where both the material and its environment have been altered by radiation. Of the many interactions that can occur when metals and water are exposed to radiation, the international consensus is that the three with the greatest impact on crack growth rates are the formation of material defects, radiation-induced segregation, and chemical reactions that increase the corrosion potential of water. The chapter discusses each of these in great detail, and includes information on predictive modeling as well.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200187
EISBN: 978-1-62708-354-6
..., and the recovery of elements from slag. It then presents an overview of argon-oxygen-decarburization (AOD) refining and types of ladles. The chapter describes chemical analysis that is performed using either optical emission or x-ray spectrographs. chemical analysis melting melting furnaces refractories...
Abstract
This chapter provides an overview of the types of melting furnaces and refractories for steel casting. It then presents information about arc furnace melting and induction melting cycles. The chapter also describes methods for the removal of phosphorous, the removal of sulfur, and the recovery of elements from slag. It then presents an overview of argon-oxygen-decarburization (AOD) refining and types of ladles. The chapter describes chemical analysis that is performed using either optical emission or x-ray spectrographs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440175
EISBN: 978-1-62708-262-4
... Abstract This chapter discusses the processes involved in heat treating of stainless steels, providing information on the classification, chemical compositions, and corrosion resistance of stainless steels and the effect of specific elements on the characteristics of iron-base alloys. Five...
Abstract
This chapter discusses the processes involved in heat treating of stainless steels, providing information on the classification, chemical compositions, and corrosion resistance of stainless steels and the effect of specific elements on the characteristics of iron-base alloys. Five groups of stainless steels are discussed: austenitic, ferritic, martensitic, precipitation-hardening, and duplex grades. The chapter also describes the heat treatment conditions that should be maintained for processing of stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240041
EISBN: 978-1-62708-251-8
... to the dislocations and again form atmospheres that pin dislocation movement. alloying elements yield strength pure metals substitutional solid solutions interstitial solid solutions relative size factor chemical affinity factor relative valency factor lattice type factor strain aging low-carbon...
Abstract
When a metal is alloyed with another metal, either substitutional or interstitial solid solutions are usually formed. This chapter discusses the general characteristics of these solutions and the effects of several alloying elements on the yield strength of pure metals. It presents four rules that give a qualitative estimate of the ability of two metals to form substitutional solid solutions: relative size factor, chemical affinity factor, relative valency factor, and lattice type factor. The chapter provides information on alloys that form an ordered structure during heating. It describes the intermediate phases that are formed during solidification between the two extremes of substitutional solid solution on the one hand and intermetallic compound on the other. The chapter concludes with a section on strain aging in low-carbon steels that allows the interstitial atoms to diffuse to the dislocations and again form atmospheres that pin dislocation movement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900045
EISBN: 978-1-62708-358-4
... Abstract This chapter describes the various phases that form in tool steels, starting from the base of the Fe-C system to the effects of the major alloying elements. The emphasis is on the phases themselves: their chemical compositions, crystal structures, and properties. The chapter also...
Abstract
This chapter describes the various phases that form in tool steels, starting from the base of the Fe-C system to the effects of the major alloying elements. The emphasis is on the phases themselves: their chemical compositions, crystal structures, and properties. The chapter also provides general considerations of phases and phase diagrams and the determination of equilibrium phase diagrams. It describes the formation of martensite, characteristics of alloy carbides, and the design of tool steels.
Book Chapter
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060001
EISBN: 978-1-62708-440-6
... techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD...
Abstract
This chapter presents the theory and practice associated with the application of thin films. The first half of the chapter describes physical deposition processes in which functional coatings are deposited on component surfaces using mechanical, electromechanical, or thermodynamic techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780383
EISBN: 978-1-62708-281-5
... techniques for chemical characterization of surfaces Table 1 Evaluation techniques for chemical characterization of surfaces Technique Information Analysis depth Analysis area Detection limit Ease of use EDS Elemental <5 μm <1 μm <1 at.% Easy WDS Elemental <5 μm...
Abstract
This article covers common techniques for surface characterization, including the modern scanning electron microscopy and methods for the chemical characterization of surfaces by Auger electron spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The principles of surface analysis and some of the applications of the technique in polymer failure studies are also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410163
EISBN: 978-1-62708-265-5
..., and martensite have tacitly assumed that the steel sections in which these microstructures form are uniform in composition, containing only the chemical elements incorporated into a steel grade by design. This assumption does not include two very important structural features introduced into all finished steel...
Abstract
Inclusions and chemical segregation are factors in many process-induced failures involving steel parts. Inclusions are nonmetallic compounds introduced during production; segregation is a type of chemical partitioning that occurs during solidification. This chapter discusses the origins of segregation and inclusions and their effect on the mechanical properties and microstructure of steel. It explains how to identify various types of inclusions and characteristic segregation patterns, such as banding. It also describes the effect of hot work processing on solidification structure and the chemical variations produced by interdendritic segregation.
Image
in Waste-to-Energy Boilers and Waste Incinerators
> High-Temperature Corrosion and Materials Applications
Published: 01 November 2007
through No. 12. The chemical compositions (wt%) at different phases are: 1: 68% Pb, 11% Mo, 6% Cr, 3% Fe, 3% Ni, 4% S, 3% Cl, and trace elements 2: 63% Pb, 9% S, 6% Cl, 7% Cr, 5% Mo, 2% Fe, 3% Ni, 2% Na, and trace elements 3: 31% Cr, 24% Ni, 2% Fe, 27% Pb, 6% Zn, 5% S, 1% Cl, and trace elements
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140009
EISBN: 978-1-62708-264-8
... are the chemical element symbols for iron and carbon, and X can be thought of as third-element additions and impurities. In the United States, most steels are classified by a code developed by the American Iron and Steel Institute (AISI). It is customary to partition steel compositions into two categories: plain...
Abstract
Steel is made by adding carbon to iron, producing a solid solution defined by its crystalline structure. This chapter discusses the effect of carbon composition and temperature on the types of structures, or phases, that form. Using detailed phase diagrams, it explains how low-carbon (hypoeutectoid) and high-carbon (hypereutectoid) steels are made, how they are classified, and how they compare. It also describes eutectoid steels which, at 0.77 wt% C, form a separate class noted for its microstructure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030167
EISBN: 978-1-62708-282-2
... of metallic materials can be influenced greatly by alloying, metallurgical treatments, and mechanical treatments. The following articles consider methods of preventing corrosion based on these factors, as applicable, for a number of technologically important alloy systems. Alloying Chemical composition...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430107
EISBN: 978-1-62708-253-2
... (EDAX), is a chemical and microanalysis technique used in conjunction with SEM. This technique detects x-rays emitted from the sample to determine the elemental composition of the analyzed volume when the sample is bombarded by a beam of electrons. Because the x-rays generated have energy...
Abstract
This chapter describes some of the most effective tools for investigating boiler tube failures, including scanning electron microscopy, optical emission spectroscopy, atomic absorption spectroscopy, x-ray fluorescence spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. It explains how the tools work and what they reveal. It also covers the topic of image analysis and its application in the measurement of grain size, phase/volume fraction, delta ferrite and retained austenite, inclusion rating, depth of carburization/decarburization, scale thickness, pearlite banding, microhardness, and hardness profiles. The chapter concludes with a brief discussion on the effect of scaling and deposition and how to measure it.
1