Skip Nav Destination
Close Modal
Search Results for
ceramics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 598 Search Results for
ceramics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090341
EISBN: 978-1-62708-266-2
... Abstract Glasses and ceramics are susceptible to stress-corrosion cracking (SCC), as are metals, but the underlying mechanisms differ in many ways. One of the major differences stems from the lack of active dislocation motion that, in metals, serves to arrest cracks by reducing stress...
Abstract
Glasses and ceramics are susceptible to stress-corrosion cracking (SCC), as are metals, but the underlying mechanisms differ in many ways. One of the major differences stems from the lack of active dislocation motion that, in metals, serves to arrest cracks by reducing stress concentrations at flaw tips. As a result, even relatively small flaws (20 to 50 μm in radius) can cause glasses and ceramics to fail. This chapter examines the propensity of flaws to grow in glass and ceramic materials exposed to different environments, especially water, at stresses well below those that would produce immediate failure. It describes crack growth mechanisms, explains how to measure crack growth rates and predict time to failure, and provides crack growth data for a number of materials and environments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730081
EISBN: 978-1-62708-283-9
... Abstract This chapter discusses the composition, properties, and uses of crystalline ceramics, glasses, clay, and concrete mixes. It also discusses the carbon structure of diamond, graphite, fullerenes, and nanotubes. amorphous carbon clay concrete mixes crystalline ceramics diamond...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... Abstract This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
... Abstract Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
... Abstract This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... Abstract This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests...
Abstract
This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests on advanced monolithic ceramics and CMCs. These include effects of flaw type and location on tensile tests, separation of flaw populations, design strength and scale effects, and lifetime predictions and environmental effects. The chapter discusses the advantages, problems, and complications of four basic categories of tensile testing techniques as applied to ceramics and CMCs. These categories are true direct uniaxial tensile tests at ambient temperatures, indirect tensile tests, tests where failure is presumed to result from tensile stresses, and high-temperature tensile tests.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300271
EISBN: 978-1-62708-323-2
... Abstract This chapter concerns itself with the tribology of ceramics, cermets, and cemented carbides. It begins by describing the composition and friction and wear behaviors of aluminum oxide, silicon carbide, silicon nitride, and zirconia. It then compares and contrasts the microstructure...
Abstract
This chapter concerns itself with the tribology of ceramics, cermets, and cemented carbides. It begins by describing the composition and friction and wear behaviors of aluminum oxide, silicon carbide, silicon nitride, and zirconia. It then compares and contrasts the microstructure, properties, and relative merits of cermets with those of cemented carbides.
Image
Published: 01 March 2001
Fig. 11 Relative erosion factors for selected ceramics at an impingement angle of 90°. Ratings based on using Stellite 6B cobalt-base alloy as the reference material. Source: Ref 5
More
Image
Published: 01 December 2004
Fig. 1 Specimen configurations for direct tensile testing of advanced ceramics. (a) Flat plate or “dog-bone” direct tensile specimen with large ends for gripping and reduced gage section. (b) Cylindrical tensile specimen with straight ends for collet grips and reduced gage section. Tapers
More
Image
Published: 01 December 2004
Fig. 2 Tensile specimens used for monolithic ceramics (each is in correct proportion to the others); all dimensions in mm. Upper row for round specimens; lower row for flat specimens. Source: G.D. Quinn, NIST
More
Image
Published: 01 December 2008
Fig. 4.25 Phase diagrams of typical ceramics. Metal oxide types: (a) M-MO basic type, (b) M-MO solid-solution type. (c) Zr-ZrO 2 dissolution type. Composite systems of ceramics: (d) Al 2 O 3 -SiO 2 , (e) Al 2 O 3 -Cr 2 O 3 , (f) Al 2 O 3 -AlN
More
Image
Published: 01 November 2012
Fig. 3 Stress-strain curves for monolithic ceramics and ceramic-matrix composites. Source: Ref 4
More
Image
Published: 01 November 2012
Fig. 5 Schematic of fracture surface features observed on many ceramics. The dimensions a and 2 b denote the minor and major axes of the flaw dimensions, r M denotes the beginning of the mist region, and r H denotes the beginning of the hackle region. Source: Ref 5
More
Image
Published: 01 October 2011
Fig. 44 Instrumented indentation test on silicon carbide ceramics. The coefficient of variation of the Martens hardness measured is low, despite the crack formation.
More
Image
Published: 01 August 2005
Fig. 7.13 Effect of titanium concentration on the wetting of some nitride ceramics by Cu-Ti-activated brazes, as measured by the contact angle. Adapted from Nicholas [1989a]
More
Image
Published: 01 October 2012
Fig. 11.2 Stress-strain curves for monolithic ceramics and ceramic-matrix composites. Source: Ref 11.1
More
Image
in Mechanical Behavior of Nonmetallic Materials
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Fig. 7.1 Schematic of fracture surface features observed on many ceramics. The dimensions a and 2 b denote the minor and major axes of the flaw dimensions, r M denotes the beginning of the mist region, and r H denotes the beginning of the hackle region. Source: Ref 7.1
More
Image
in Tribological Properties of Ceramics, Cermets, and Cemented Carbides
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 10.2 Two-body abrasion test (ASTM International G174) results of some ceramics (2 N, 8 h/728 m, 30 μm Al 2 O 3 )
More
Image
in Tribological Properties of Ceramics, Cermets, and Cemented Carbides
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 10.3 Hardness ranges for some ceramics
More
Image
in Tribological Properties of Ceramics, Cermets, and Cemented Carbides
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 10.5 Coefficient of friction of various ceramics in block-on-ring testing, where * indicates thermal spray coatings
More
1