1-20 of 268 Search Results for

ceramic matrix composites

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... transducer). Abstract This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... Abstract Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load...
Image
Published: 01 October 2012
Fig. 11.1 Comparison of polymer-matrix composites with ceramic-matrix composites. Source: Ref 11.1 More
Image
Published: 01 November 2012
Fig. 3 Stress-strain curves for monolithic ceramics and ceramic-matrix composites. Source: Ref 4 More
Image
Published: 01 November 2010
Fig. 21.2 Comparison of polymer and metal with ceramic matrix composites More
Image
Published: 01 November 2010
Fig. 21.3 Stress-strain for monolithic and ceramic matrix composites More
Image
Published: 01 October 2012
Fig. 11.2 Stress-strain curves for monolithic ceramics and ceramic-matrix composites. Source: Ref 11.1 More
Image
Published: 01 October 2012
Fig. 1.25 Ceramic-matrix composite structural applications. (a) Ceramic-matrix ceramic exhaust nozzles. (b) Carbon-carbon brakes More
Image
Published: 01 October 2012
Fig. 11.8 Tool life of ceramic, ceramic-matrix composite, and cemented carbide materials when machining Inconel 718 (feed of 0.2 mm/rev; depth of cut of 2 mm). Source: Ref 11.4 More
Image
Published: 01 November 2010
Fig. 1.34 Metal and ceramic matrix composite applications More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
... Abstract Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites...
Image
Published: 01 October 2012
Fig. 11.4 Relative material temperature limits. CFRP, carbon fiber-reinforced plastic; GMC, glass-matrix composite; MMC, metal-matrix composite; GCMC, glass-ceramic-matrix composite; CMC, ceramic-matrix composite; C-C, carbon-carbon; SiAlON, silicon-aluminum-oxynitride. Source: Ref 11.1 More
Image
Published: 01 November 2010
Fig. 21.1 Relative material temperature limits. Carbon-carbon (C-C), carbon fiber reinforced plastic (CFRP), ceramic matrix composite (CMC), carbon-silicon carbide (C-SiC), glass-ceramic matrix composite (GCMC), metal matrix composite (MMC), silicon-aluminum-oxygen-nitrogen (SIALON) More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... Abstract This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers...
Image
Published: 01 October 2012
Fig. 11.27 Schematic of the directed metal oxidation process. CMC, ceramic-matrix composite. Courtesy of Lanxide Corporation. Source: Ref 11.11 More
Image
Published: 01 November 2010
Fig. 21.20 Liquid silicon infiltration process. Chemical vapor infiltration (CVI), silicon (Si), silicon carbide (SiC), ceramic matrix composite (CMC) More
Image
Published: 01 November 2012
Fig. 9 Rising R -curve of a SiC whisker-reinforced alumina-ceramic-matrix composite, measured by the double-cantilever beam technique. Adapted from Ref 8 More
Image
Published: 01 October 2012
Fig. 11.15 Immersion tubes for molten aluminum holding furnaces made from a filament-wound continuous fiber ceramic-matrix composite. Courtesy of Textron Systems. Source: Ref 11.3 More
Image
Published: 01 October 2012
Fig. 11.9 Relative slurry erosion wear performance of metallic, ceramic, and ceramic-matrix composite (Al 2 O 3 -SiC p ) materials. This evaluation compared measured material losses in a slurry pot test in which 14 mm (0.54 in.) diameter by 60 mm (2.4 in.) long test pins were rotated at 10 m/s More