1-20 of 499

Search Results for ceramic materials

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 November 2012
Fig. 8 R -curves of three Si 3 N 4 ceramic materials measured by the short rod chevron notch technique. Adapted from Ref 8 More
Image
Published: 01 April 2004
Fig. 4.2 A porous ceramic material metallized with a thick silver electroplate. The residual stress in the metallization has resulted in a peel failure through the near-surface layer of the ceramic. More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
... and ceramic fiber-reinforced metal-matrix composites. bone cyclic loading ceramics fatigue crack growth fatigue modeling fatigue properties fatigue test polymers Introduction In this chapter we consider several classes of materials that are of special interest: polymers, bone, ceramics...
Image
Published: 01 October 2012
Fig. 11.8 Tool life of ceramic, ceramic-matrix composite, and cemented carbide materials when machining Inconel 718 (feed of 0.2 mm/rev; depth of cut of 2 mm). Source: Ref 11.4 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... Abstract This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090341
EISBN: 978-1-62708-266-2
... concentrations at flaw tips. As a result, even relatively small flaws (20 to 50 μm in radius) can cause glasses and ceramics to fail. This chapter examines the propensity of flaws to grow in glass and ceramic materials exposed to different environments, especially water, at stresses well below those that would...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
... zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process. brazing ceramic processing diffusion bonding structural ceramics toughened ceramics weibull analysis...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... applicable to nonmetals, as long as the substance is homogeneous and isotropic. This chapter briefly discusses the essential features associated with ceramics and polymers. Special attention is paid to the characteristics of these materials as compared to metals. Ceramics Ceramics are inorganic...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300271
EISBN: 978-1-62708-323-2
..., properties, and relative merits of cermets with those of cemented carbides. cemented carbides cermets friction and wear properties industrial ceramics 10.1 Introduction Ceramics This chapter is about materials that have many tribological applications because they can be harder than any...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... composites chemical vapor infiltration directed metal oxidation hot pressing liquid silicon infiltration polymer infiltration reaction bonding sol-gel techniques MONOLITHIC CERAMIC MATERIALS contain many desirable properties, such as high moduli, high compression strengths, high-temperature...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
... to the characteristics of these materials as compared to metals. 7.1 Ceramics and Glasses Most ceramics are composed of oxides, carbides, nitrides, or borides. Advanced ceramics used for engineering applications are in a polycrystalline form. They consist of individual grains, which are actually single crystals...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040010
EISBN: 978-1-62708-428-4
... metallic, cermet, or ceramic material. High-Velocity Oxyfuel (HVOF) In the high-velocity oxyfuel (HVOF) process, fuel such as propane, propylene, or hydrogen is mixed with oxygen and burned in a chamber. (In some cases, liquid kerosene may be used as a fuel and air as the oxidizer.) The products...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400207
EISBN: 978-1-62708-479-6
... Metal are common 3D printer manufacturers for composite materials ( Ref 10.17 , 10.18 ). The 3D printing ceramic industry is minor in comparison to the polymer sector, but it is predicted to grow more than $450 million by 2029 ( Ref 10.19 ). New advanced ceramic materials from XJet Ltd...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230221
EISBN: 978-1-62708-351-5
.... In the light of their own experimental findings, Naidich, Zhuravlev, and Krasovskaya [1998] point out that the various factors that influence chemical bonding and wetting of ceramic materials by molten metals are still far from clear and require further study. Fig. 7.6 Variation of contact angle...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
... Abstract Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550621
EISBN: 978-1-62708-307-2
... Abstract This chapter consists of three parts. The first part provides data and guidelines for selecting materials and processing routes. It compares the basic properties of metals, ceramics, and polymers, identifies important measures of performance, and discusses manufacturing processes...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400073
EISBN: 978-1-62708-479-6
.... density furnace sintering grain size hot-isostatic pressing laser sintering microwave sintering rare earth magnets spark plasma sintering tungsten alloys zirconia ceramics IN MATERIALS PROCESSING, sintering is an extremely important step that has been practiced by humankind since time...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460017
EISBN: 978-1-62708-285-3
... for bonding, too-high pressures lead to fracturing and thus lower deposition efficiency. Fig. 2.10 SEM micrographs of typical single-impact events for Zn-6.3wt%Mg alloy particles under different process parameters, as indicated Ceramic Materials In general, the brittle behavior of ceramic...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780109
EISBN: 978-1-62708-268-6
... is that the system failed even though all parts in the system met their drawing requirements. The common failures discussed in this chapter include those associated with metallic components, composite materials, plastic components, ceramic components, and electrical and electronic components. ceramic...