1-20 of 582 Search Results for

ceram

Sort by
Image
Published: 01 October 2011
Fig. 17.2 Thermal conductivity and expansion of metals in relation to polymers, ceramics, and composites. Source: Adapted from Ref 17.7 More
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730081
EISBN: 978-1-62708-283-9
... Abstract This chapter discusses the composition, properties, and uses of crystalline ceramics, glasses, clay, and concrete mixes. It also discusses the carbon structure of diamond, graphite, fullerenes, and nanotubes. amorphous carbon clay concrete mixes crystalline ceramics diamond...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... Abstract This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
... Abstract Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... Abstract Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration...
Image
Published: 30 April 2021
Fig. 10.4 System wear for various ceramic and ceramic/metal couples (in accordance with ASTM International G77 block-on-ring test), where * indicates thermal spray More
Image
Published: 01 October 2012
Fig. 1.25 Ceramic-matrix composite structural applications. (a) Ceramic-matrix ceramic exhaust nozzles. (b) Carbon-carbon brakes More
Image
Published: 01 October 2012
Fig. 11.2 Stress-strain curves for monolithic ceramics and ceramic-matrix composites. Source: Ref 11.1 More
Image
Published: 01 October 2012
Fig. 11.8 Tool life of ceramic, ceramic-matrix composite, and cemented carbide materials when machining Inconel 718 (feed of 0.2 mm/rev; depth of cut of 2 mm). Source: Ref 11.4 More
Image
Published: 01 October 2012
Fig. 11.9 Relative slurry erosion wear performance of metallic, ceramic, and ceramic-matrix composite (Al 2 O 3 -SiC p ) materials. This evaluation compared measured material losses in a slurry pot test in which 14 mm (0.54 in.) diameter by 60 mm (2.4 in.) long test pins were rotated at 10 m/s More
Image
Published: 01 November 2012
Fig. 3 Stress-strain curves for monolithic ceramics and ceramic-matrix composites. Source: Ref 4 More
Image
Published: 01 December 2018
Fig. 7.31 Shapes of pouring cups, (a) ceramic, (b) cast iron, (c) two cavity ceramic More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... Abstract This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090341
EISBN: 978-1-62708-266-2
... Abstract Glasses and ceramics are susceptible to stress-corrosion cracking (SCC), as are metals, but the underlying mechanisms differ in many ways. One of the major differences stems from the lack of active dislocation motion that, in metals, serves to arrest cracks by reducing stress...
Image
Published: 01 December 1984
Figure 2-33 Microstructure of as-polished ceramic sample, 75×. More
Image
Published: 01 August 2005
Fig. 5.41 Variation of fatigue crack growth rates for metals, intermetallics, ceramics, and composites. Source: Ref 5.45 More
Image
Published: 01 August 2005
Fig. 7.1 Schematic of fracture surface features observed on many ceramics. The dimensions a and 2 b denote the minor and major axes of the flaw dimensions, r M denotes the beginning of the mist region, and r H denotes the beginning of the hackle region. Source: Ref 7.1 More
Image
Published: 01 March 2001
Fig. 11 Relative erosion factors for selected ceramics at an impingement angle of 90°. Ratings based on using Stellite 6B cobalt-base alloy as the reference material. Source: Ref 5 More
Image
Published: 01 March 2001
Fig. 2 Nitride ceramic coatings deposited on cemented carbide substrates by physical vapor deposition. (a) TiN. (b) TiCN. (c) TiAlN More