Skip Nav Destination
Close Modal
Search Results for
cast silicon bronze
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 135 Search Results for
cast silicon bronze
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2000
Fig. 23 Alloys with reported corrosion rates of <0.5 mm/year (<20 mils/year) in HCl Zone Metal 1 ACI CN-7M (a) (b) (c) Monel (b) (c) (d) Copper (b) (c) (d) Nickel 200 (b) (c) (d) Silicon bronze (b) (c) (d) Silicon cast iron (b) (e) Tungsten Titanium, grade
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240469
EISBN: 978-1-62708-251-8
... resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper...
Abstract
Copper is often used in the unalloyed form because pure copper is more conductive than copper alloys. Alloying elements are added to optimize strength, ductility, and thermal stability, with little negative effect on other properties such as conductivity, fabricability, and corrosion resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper production process and concludes with a discussion on corrosion resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
..., brasses are by far the most commonly cast copper alloys. There are six subcategories of cast brasses: red and leaded red, semi-red and leaded semi-red, yellow and leaded yellow, high-strength and leaded high-strength yellow (manganese bronzes), silicon brasses/ silicon bronzes, and copper-bismuth/copper...
Abstract
This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum, silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300163
EISBN: 978-1-62708-323-2
... of other elements. Copper alloys alloyed with tin are called bronzes; however, it is current practice in metallurgy to also call copper alloyed with silicon, aluminum, and other elements bronzes . Copper was one of the first metals used by early people. They learned that alloying with tin produced a metal...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
... casting of components. For example, cast irons are alloys that use the iron-carbon eutectic (see Chapter 10, “Cast Irons,” in this book). Aluminum-silicon alloys are another example of a major family of shape casting alloys with a eutectic point. The aluminum-silicon eutectic is located at approximately...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060333
EISBN: 978-1-62708-261-7
... it is applied to castings to meet specified hardness, ductility, or toughness requirements. Homogenization is required most frequently for alloys having wide freezing ranges, such as tin (phosphor) bronzes, copper-nickels, and silicon bronzes. It is rarely necessary to homogenize finished or semifinished mill...
Abstract
Nonferrous alloys are heat treated for a variety of reasons. Heat treating can reduce internal stresses, redistribute alloying elements, promote grain formation and growth, produce new phases, and alter surface chemistry. This chapter describes heat treatment processes and how nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060073
EISBN: 978-1-62708-261-7
... Jordan 5000–3000 B.C. Chalcolithic period: melting of copper; experimentation with smelting Near East 3000–1500 B.C. Bronze Age: arsenical copper and tin bronze alloys Near East 3000–2500 B.C. Lost-wax casting of small objects Near East 2500 B.C. Granulation of gold and silver...
Abstract
The discovery and use of materials have shaped civilization since ancient times. This chapter traces the history of the use of metals from hammered copper estimated to be 11,000 years old to the development of electrolytically refined aluminum in 1884. The discussion covers the advent of the Bronze Age, extraction of metals from their respective ores, and the discovery of modern metals such as chromium, vanadium, platinum, and titanium.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
... alloys (3 xxx wrought series), and the binary alloys in the aluminum-silicon series (4 xxx wrought, 4 xx.x cast) and aluminum-magnesium series (5 xxx wrought and 5 xx .0 cast). Binary alloys in the aluminum-silicon and aluminum-magnesium series are solid-solution alloys, but heat treatable alloys may...
Abstract
The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some of the common nonferrous alloys that can be hardened through heat treatment. The nonferrous alloys covered include aluminum alloys, cobalt alloys, copper alloys, magnesium alloys, nickel alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300421
EISBN: 978-1-62708-323-2
..., aluminum stair treads are cast with embedded silicon carbide or other hard particles in wear zones. These composites resist abrasion and provide traction to prevent slipping. Aluminum alloys tend to adhesively transfer to other metals under rubbing conditions; thus, it is not common practice to use...
Abstract
This chapter provides guidelines and insights on the selection of materials, coatings, and treatments for friction and wear applications. It begins with a review of the system nature of tribological effects, the subtleties of friction, and the selection idiosyncrasies of the material systems and lubricants covered in prior chapters. It then presents a systematic approach for selecting tribomaterials, using an automotive fan motor as an example.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250039
EISBN: 978-1-62708-345-4
... and toughness. (c) Hardness is not mandatory and is shown for information only. Compositions and properties of cast gear bronzes Table 13 Compositions and properties of cast gear bronzes UNS designation Nominal composition, % Typical mechanical properties, as cast (heat treated...
Abstract
This chapter describes important requirements for ferrous and nonferrous alloys used for gears. Wrought surface-hardening and through-hardening carbon and alloy steels are the most widely used of all gear materials and are emphasized in this chapter. The processing characteristics of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
...) 105–125 61–72 Zinc aluminum 116 67 Pure Ruhenium (Ru) 88–146 51–85 (5xx.x series) Cast aluminum magnesium 125–126 72–73 Pure Calcium (Ca) 26–230 15–133 Wrought bronze 100–159 58–92 (7xx.x series) Cast aluminum zinc 92–168 53–97 (3xx.x series) Cast aluminum silicon plus...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730161
EISBN: 978-1-62708-283-9
... William F. Hosford DOI: 10.31399/asm.tb.ems.t53730161 VAppendix Copyright © 2013 ASM International® All rights reserved www.asminternational.org Properties of Materials Material Aluminum Brass (30% Zn) Bronze (5% Zn) Cast iron Copper Diamond Magnesium Silicon Silver Steel (1020) Alumina Concrete Glass...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
...-base alloys containing no tin, such as aluminum bronze (copper-aluminum), silicon bronze (copper-silicon), and beryllium bronze (copper-beryllium). Brasses are copper-zinc alloys, which are probably the most widely used class of copper-base alloys. Most brasses are copper-zinc solid-solution alloys...
Abstract
Nonferrous metals are of commercial interest both as engineering materials and as alloying agents. This chapter addresses both roles, discussing the properties, processing characteristics, and applications of several categories of nonferrous metals, including light metals, corrosion-resistance alloys, superalloys, refractory metals, low-melting-point metals, reactive metals, precious metals, rare earth metals, and metalloids or semimetals. It also provides a brief summary on special-purpose materials, including uranium, vanadium, magnetic alloys, and thermocouple materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170062
EISBN: 978-1-62708-297-6
... of Alloying Elements The manufacture of high-quality ductile iron begins with the careful selection of charge materials that will give a relatively pure cast iron, free of the undesirable residual elements sometimes found in other cast irons. Carbon, manganese, silicon, phosphorus, and sulfur must...
Abstract
This article discusses the metallurgy and properties of ductile cast iron. It begins with an overview of ductile or spheroidal-graphite iron, describing the specifications, applications, and compositions. It then discusses the importance of composition control and explains how various alloying elements affect the properties, behaviors, and processing characteristics of ductile iron. The article describes the benefits of nickel and silicon additions in particular detail, explaining how they make ductile iron more resistant to corrosion, heat, and wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730059
EISBN: 978-1-62708-283-9
..., quenching to room temperature to form a supersaturated solid solution, and finally heating to approximately 200 °C (400 °F) to allow fine precipitates to form. Source: Ref 6.5 Most aluminum castings contain silicon because there is little volume change on freezing due to the expansion of silicon...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290251
EISBN: 978-1-62708-319-5
... structures are also used to improve solar cell performance. Just emerging from the research laboratory is the idea of an overlayer for silicon solar cells. The overlayer is composed of perovskite ceramics with an appropriate binder, formed into a paste and sprayed, cast, spin cast, or otherwise placed over...
Abstract
This chapter is intended to identify materials, processes, and designs that will lead to great advances in powder-binder forming technologies. It discusses some of the structures obtained through these advances in powder-binder technologies such as binder jetting and extrusion-based additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060273
EISBN: 978-1-62708-355-3
... Niobium and its alloys 931 135 241 35 Iron-base superalloys; cast, wrought 924 134 276 40 Cobalt-base superalloys, wrought 800 116 241 35 Bronzes, wrought( a ) 786 114 97 14 Heat treated low-alloy constructional steels; wrought, mill heat treated 758 110 621 90 High...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.9781627083232
EISBN: 978-1-62708-323-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.9781627082846
EISBN: 978-1-62708-284-6
1