Skip Nav Destination
Close Modal
Search Results for
cast magnesium alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 399
Search Results for cast magnesium alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 October 2012
Fig. 3.11 AZ91 die-cast magnesium alloy used in automotive applications. (a) Door frame for hidden headlight assembly weighing 0.370 kg (0.816 lb). (b) Air intake grille weighing 3.240 kg (7.143 lb). (c) Air cleaner cover (shown mounted on a vehicle engine) weighing 2.307 kg (5.086 lb). (d
More
Image
in Stress-Corrosion Cracking of Magnesium Alloys[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 9.1 Data from Ref 9.13 comparing similar cast and wrought magnesium alloys during long-term stress-corrosion cracking (SCC) tests in a rural environment
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550141
EISBN: 978-1-62708-307-2
..., and mechanical properties of cast and wrought magnesium alloys. It also describes the processes used to produce magnesium parts, the causes and effects of corrosion, and the use of protective coatings and treatments. cast magnesium alloys corrosion protection corrosion resistance extrusion...
Abstract
Magnesium, by volume, is two-thirds the weight of aluminum and one-quarter the weight of steel. It also has good damping capacity, giving it an edge over other metals in high-vibration environments. This chapter discusses the basic metallurgy, alloy designations, compositions, and mechanical properties of cast and wrought magnesium alloys. It also describes the processes used to produce magnesium parts, the causes and effects of corrosion, and the use of protective coatings and treatments.
Image
Published: 01 June 2008
Image
Published: 01 June 2008
Fig. 27.9 Microstructure of sand-cast QE22A-T6 magnesium alloy. Original magnification: 100×. Source: Ref 8
More
Image
Published: 01 October 2012
Fig. 3.4 Effect of zirconium additions to sand-cast binary magnesium-zirconium alloys on mechanical properties and grain size. Source: Ref 3.2
More
Image
Published: 01 October 2012
Image
Published: 01 October 2012
Fig. 3.12 Magnesium alloy sand castings. (a) Main transmission housing for a heavy lift helicopter that was sand cast in WE43B magnesium alloy having a T6 temper. Casting weight = 206 lb (93 kg). Courtesy of Fansteel Wellman Dynamics. (b) Gearbox housing for a military fighter aircraft
More
Image
Published: 01 October 2012
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240509
EISBN: 978-1-62708-251-8
... that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys...
Abstract
Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys and wrought magnesium alloys. It also discusses the nominal compositions, properties, and applications of commercially pure zinc, zinc casting alloys, and wrought zinc alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090257
EISBN: 978-1-62708-266-2
... the density of iron and two-thirds that of aluminum. Because of this low density, both cast and wrought magnesium alloys have been developed and used for a wide variety of structural applications in which low weight is important, if not a requirement. The magnesium industry grew rapidly during the period...
Abstract
Stress-corrosion cracking (SCC) in magnesium alloys was first reported in the 1930s and, within ten years, became the focus of intense study. This chapter provides a summary of all known work published since then on the nature of SCC in magnesium alloys and how it is related to composition, microstructure, and heat treatment. It describes the types of environments where magnesium alloys are most susceptible to SCC and the effect of contributing factors such as temperature, strain rate, and applied and residual stresses. The chapter also discusses crack morphology and what it reveals, provides information on proposed cracking mechanisms, and presents a practical approach for preventing SCC.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170432
EISBN: 978-1-62708-297-6
.... Nonstructural Uses Magnesium is an important constituent in aluminum alloys; in fact, the largest usage of magnesium (44% of reported consumption) is for alloying with aluminum. Additions of up to 5% in wrought alloys and 10% in cast alloys result in aluminum alloys with favorable combinations of strength...
Abstract
This article examines the composition and properties of magnesium and its alloys. It discusses alloy and temper designations, applications and product forms, and commercial alloy systems, and explains how alloying elements affect physical and mechanical properties, processing characteristics, and corrosion behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030172
EISBN: 978-1-62708-282-2
... … … C, W (a) For details, see alloying specifications. (b) C, castings; W, wrought products Metallurgical Factors Chemical Composition As the galvanic series in seawater reveals, magnesium is anodic to all other structural metals and, as a result, galvanic interactions between...
Abstract
This chapter discusses the effects of metallurgical factors on the corrosion resistance of magnesium alloys. The factors are chemical composition, heat treating, grain size, and cold-work effects. The chapter describes the causes of corrosion failures in magnesium alloys, namely heavy-metal contamination, blast residues, flux inclusions, and galvanic attack.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170351
EISBN: 978-1-62708-297-6
... alloying elements may be specified. 3 xx.x: Alloys in which silicon is the principal alloying element. The other alloying elements such as copper and magnesium are specified. The 3 xx.x series comprises nearly 90% of all shaped castings produced. 4 xx.x: Alloys in which silicon is the principal...
Abstract
This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification system by which they are defined, and the applications for which they are suited. It then explains how primary alloying elements, second-phase constituents, and impurities affect yield strength, phase formation, and grain size and how they induce structural changes that help refine certain alloys. The article also explains how primary alloying elements affect corrosion and wear behaviors and how they influence fabrication processes such as forming, forging, welding, brazing, and soldering.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
.... This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
... copper nickel 18 10 Pure Tellurium (Te) 18–20 9.9–11 Silver alloys 19 11 Pure Silver (Ag) 17–21 9.4–12 Wrought brass 16–23 8.9–13 3xx.x series cast aluminum silicon + copper or magnesium 16–24 8.9–13 2xxx series wrought aluminum copper 16–24 8.9–13 Zinc copper titanium...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340035
EISBN: 978-1-62708-427-7
... types and alloying elements of cast aluminum are: 1 xx.x series for unalloyed compositions with a minimum of 99% aluminum 2 xx.x series containing copper as the major alloying element 3 xx.x series containing silicon with added copper and/or magnesium 4xx.x series of binary...
Abstract
This chapter provides an overview of the alloy and temper designations adopted for aluminum cast and wrought products. It explains the naming system and how to identify the main alloying elements and basic strengthening mechanism from any given alloy and temper designation. The chapter provides additional detail on the strengthening and softening mechanisms that allow aluminum alloys to attain a range of engineering properties. The strength of aluminum alloys can be controlled by three methods: solid-solution hardening by alloying, work hardening by plastic deformation, and precipitation hardening with appropriate alloying and heat treatment.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
... alloys (3 xxx wrought series), and the binary alloys in the aluminum-silicon series (4 xxx wrought, 4 xx.x cast) and aluminum-magnesium series (5 xxx wrought and 5 xx .0 cast). Binary alloys in the aluminum-silicon and aluminum-magnesium series are solid-solution alloys, but heat treatable alloys may...
Abstract
The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some of the common nonferrous alloys that can be hardened through heat treatment. The nonferrous alloys covered include aluminum alloys, cobalt alloys, copper alloys, magnesium alloys, nickel alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
... for aluminum alloys Series Aluminum content or main alloying element Wrought alloys 1 xxx 99.00% min 2 xxx Copper 3 xxx Manganese 4 xxx Silicon 5 xxx Magnesium 6 xxx Magnesium and silicon 7 xxx Zinc 8 xxx Others 9 xxx Unused Cast alloys 1 xx .0...
Abstract
Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites. This chapter provides a brief overview of these lightweight materials, discussing their primary advantages along with their properties, behaviors, and limitations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
... Abstract This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
1