Skip Nav Destination
Close Modal
Search Results for
cast aluminum-silicon alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 733 Search Results for
cast aluminum-silicon alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190035
EISBN: 978-1-62708-296-9
..., Ni, Cr, V, Ti) and with metals such as Mg and Cu. This chapter is a compilation of phase diagrams, microstructure images, and tables, providing information on more than 30 binary, ternary, and quaternary alloy systems associated with intermetallic phases in aluminum-silicon castings. Each section...
Abstract
Structurally differentiated intermetallic phases are important constituents in the microstructure of aluminum alloys, with the potential to influence properties, behaviors, and processing characteristics. These phases can form in aluminum-silicon alloys with transition metals (Fe, Mn, Ni, Cr, V, Ti) and with metals such as Mg and Cu. This chapter is a compilation of phase diagrams, microstructure images, and tables, providing information on more than 30 binary, ternary, and quaternary alloy systems associated with intermetallic phases in aluminum-silicon castings. Each section includes tabular information and data on the intermetallic phases in the aluminum corner of the equilibrium phase diagram, the characteristics of the crystal lattice of intermetallic phases, the chemical composition of the alloy intermetallic phases, and equilibrium reactions in the alloy system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190001
EISBN: 978-1-62708-296-9
... Abstract This chapter serves as a study and guide on the main phase constituents of cast aluminum-silicon alloys, alpha-Al solid solution and Si crystals. The first section focuses on the structure of Al-Si castings in the as-cast state, covering the morphology of the alpha-Al solid solution...
Abstract
This chapter serves as a study and guide on the main phase constituents of cast aluminum-silicon alloys, alpha-Al solid solution and Si crystals. The first section focuses on the structure of Al-Si castings in the as-cast state, covering the morphology of the alpha-Al solid solution grains and the process by which they form. It describes how cooling rates, temperature gradients, and local concentrations influence the topology of the crystallization front, and how they play a role in determining the morphology and dispersion degree of the grains observed in cross sections of cast parts. It also describes the mechanism behind dendritic grain crystallization and how factors such as surface tension, capillary length, and lattice symmetry affect dendritic arm size and spacing. The section that follows examines the morphology of the silicon crystals that form in aluminum-silicon castings and its effect on properties and processing characteristics. It discusses the faceted nature of primary Si crystals and the modification techniques used to optimize their shape. It also describes the morphology of the (alpha-Al + Si) eutectic, which can be lamellar or rodlike in shape, and explains how it can be modified through temperature control or alloy additions to improve properties such as tensile strength and plasticity and reduce shrinkage.
Image
Published: 01 October 2011
Fig. 5.2 Aluminum-silicon phase diagram with as-cast microstructures of alloys with various compositions above, below, or near the eutectic composition of 12.6% Si. Alloys with less than 12.6% Si are referred to as hypoeutectic, those with close to 12.6% Si as eutectic, and those with over
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190147
EISBN: 978-1-62708-296-9
... comparing the effects of selective etching procedures on various phase constituents in cast aluminum-silicon alloys. The compilation of images demonstrates the use of two types of reagents: those that reveal discontinuities in crystal orientation and grain boundaries, and those that reveal differences...
Abstract
Intermetallic phase precipitates in aluminum alloys can often be identified without resorting to chemical analysis. Very often the determination can be made based on the shape, color, and refractive properties of the particular phase. This chapter explains how these visual attributes can be observed using metallographic techniques. It describes, and in many cases illustrates, the characteristic shapes, colors, and optical properties associated with aluminum alloy intermetallic phases and how they can be enhanced through selective etching. It provides an atlas of microstructures comparing the effects of selective etching procedures on various phase constituents in cast aluminum-silicon alloys. The compilation of images demonstrates the use of two types of reagents: those that reveal discontinuities in crystal orientation and grain boundaries, and those that reveal differences in chemical composition.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190089
EISBN: 978-1-62708-296-9
..., before and after modification. The chapter also provides composition data and includes callouts identifying various phase constituents in the interdendritic eutectic microstructure. cast aluminum-silicon alloys microstructure phase constituents MICROSTRUCTURE IMAGES represent...
Abstract
This chapter is an atlas of microstructures observed in AlSi7Mg, AlSi11, and Al21CuNiMg modified with either eutectic (strontium, sodium) or hypereutectic (phosphorus) silicon crystals. The microstructure images reveal the as-cast state of gravity castings made in sand and metal molds, before and after modification. The chapter also provides composition data and includes callouts identifying various phase constituents in the interdendritic eutectic microstructure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190vii
EISBN: 978-1-62708-296-9
... as an advantageous alternative to other materials such as ferrous alloys, primarily because of the competitive value of their strength-to-density ratio (R m/ρ ), and because of other special properties ( Ref 1 , 2 ). Cast aluminum-silicon alloys (Si > 4 wt%) are specified for cast parts for various industries...
Abstract
This chapter provides an overview of the microstructure-property relationships associated with aluminum-silicon alloys. It includes information on commercial designations and grades, phase compositions, solidification paths, alloying elements, and intermetallic phases. It also provides solubility data and maps out the topics covered in subsequent chapters in the book.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.9781627082969
EISBN: 978-1-62708-296-9
Image
Published: 01 June 2008
Fig. 26.9 Modification of aluminum-silicon casting alloys. (a) Unmodified. (b) Modified. Original magnification: 100×. Source: Ref 12
More
Image
Published: 01 June 2008
Image
Published: 01 December 2016
Fig. 3 Microstructure of the aluminum-silicon casting alloys. (a) Hypoeutectic alloy (UEU, Fig. 1 )—model: network. (b) Eutectic alloy (EU, Fig. 1 )—model: grains. (c) Hypereutectic alloy (OEU, Fig. 1 )—model: dispersive. Light microscopy, etched with 1HF(1)
More
Image
Published: 01 October 2012
Fig. 2.25 Modification of aluminum-silicon casting alloys. (a) Unmodified. (b) Modified. Source: Ref 2.21
More
Image
Published: 01 October 2012
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340083
EISBN: 978-1-62708-427-7
... of cast products is also included. aluminum-silicon casting alloys expendable mold grain refinement inclusions melt treatment porosity reusable mold shape casting shape-casting applications solidification Examples of (a) aluminum cast components by sand-mold casting. Courtesy...
Abstract
This chapter describes the processes and alloys used in the casting of aluminum components, the advantages and disadvantages of the different shape-casting methods, and the major factors that influence alloy selection for shape-casting applications. An overview of the heat treatment of cast products is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
.... This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140039
EISBN: 978-1-62708-335-5
... aluminum-silicon alloys. aluminum alloy castings dendrite arm spacing eutectic modification grain shape grain size intermetallic phases microstructure phase refinement Microstructural features are products of metal chemistry and solidification conditions. The microstructural features...
Abstract
In castings, microstructural features are products of metal chemistry and solidification conditions. The microstructural features, excluding defects, that most strongly affect the mechanical properties or aluminum castings are size, form, and distribution of intermetallic phases; dendrite arm spacing; grain size and shape; and eutectic modification and primary phase refinement. This chapter discusses the effects of these microstructural features on properties and methods for controlling them. The chapter concludes with a detailed examination of the refinement of hypereutectic aluminum-silicon alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190173
EISBN: 978-1-62708-296-9
... Abstract This appendix lists the intermetallic phase designations of aluminum-silicon casting alloys and defines symbols and abbreviations associated with the variables, processes, and tools used in microstructural examination. cast aluminum-silicon alloys intermetallic phases...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410091
EISBN: 978-1-62708-280-8
.... A number of very useful alloys have been developed for diverse applications. The alloying elements used are silicon, magnesium, copper, manganese, zinc, nickel, and titanium. 5.1 Cast Alloy Designations Table 5.1 shows the Aluminum Association’s cast alloy designations, along with their general...
Abstract
This chapter is a collection of tables listing: cast alloy designations of Aluminum Association, along with their general applications; the chemical compositions of the frequently used alloys for gravity permanent molds, low-pressure permanent molds, squeeze castings, and die castings; the typical tensile properties of die cast alloys; and the designations of different heat treatments and their description. The tables also list the temperatures and times of typical heat treatment cycles for different permanent mold cast alloys; typical components in sand, gravity, and low-pressure permanent mold castings and die castings, the functional requirements of each process, and the corresponding suitable alloys and heat treatments; and alloys that are high vacuum die cast for structural castings. The chapter also presents examples of photomicrographs of some alloys cast by different processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170351
EISBN: 978-1-62708-297-6
... in the greatest volumes contain alloying additions of silicon far in excess of the amounts in most wrought alloys. Silicon is the alloying element that literally makes the commercial viability of the high-volume aluminum casting industry possible. Silicon contents from ~4% to the eutectic level of ~12% reduce...
Abstract
This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification system by which they are defined, and the applications for which they are suited. It then explains how primary alloying elements, second-phase constituents, and impurities affect yield strength, phase formation, and grain size and how they induce structural changes that help refine certain alloys. The article also explains how primary alloying elements affect corrosion and wear behaviors and how they influence fabrication processes such as forming, forging, welding, brazing, and soldering.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240487
EISBN: 978-1-62708-251-8
...-lithium alloys of the 8 xxx series. For the cast alloys, this includes the aluminum-copper alloys (2 xx . x ), some of the aluminum-silicon + copper and/or magnesium alloys (3 xx . x ), and the aluminum-zinc alloys (7 xx . x ). One rather disappointing property of high-strength aluminum alloys...
Abstract
Aluminum has many outstanding properties, leading it to be used for a wide range of applications. It offers excellent strength-to-weight ratio, good corrosion and oxidation resistance, high electrical and thermal conductivity, exceptional formability, and relatively low cost. This chapter examines the metallurgy, composition, processing, and mechanical properties of aluminum and its alloys, both cast and wrought forms. It also covers heat treating and basic temper designations, including annealed, work hardened, solution heat treated, and solution heated treated and aged. The chapter concludes with information on corrosion and oxidation resistance.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.9781627083355
EISBN: 978-1-62708-335-5
1