Skip Nav Destination
Close Modal
Search Results for
cast aluminum matrix composites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 373 Search Results for
cast aluminum matrix composites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140069
EISBN: 978-1-62708-335-5
... composites. aluminum casting alloys aluminum castings cast aluminum matrix composites corrosion resistance fatigue strength mechanical properties notch toughness physical properties plane-strain fracture toughness subcritical crack growth tear resistance This chapter takes a detailed...
Abstract
This chapter reviews and provides data tables for the wide range of properties and performance characteristics that are possible with specific aluminum casting alloys and tempers. Properties and performance attributes addressed include casting and finishing characteristics; typical physical properties; typical and minimum (design) mechanical properties; fatigue strength; fracture resistance, including subcritical crack growth; and resistance to general corrosion and to stress-corrosion cracking. The chapter concludes with information on the properties of cast aluminum matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140021
EISBN: 978-1-62708-335-5
... process technologies used with castings, including metallurgical bonding, metal-matrix composites, and hot isostatic pressing. aluminum alloy castings expendable mold gravity-feed casting nonexpendable mold gravity feed casting pressure die casting 3.1 History Aluminum alloy castings were...
Abstract
This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes and their variants: expendable mold gravity-feed casting, nonexpendable (permanent) mold gravity feed casting, and pressure die casting. Next, the chapter describes the technologies used to produce premium engineered castings and when such castings may be relevant. The chapter concludes with descriptions of other process technologies used with castings, including metallurgical bonding, metal-matrix composites, and hot isostatic pressing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
...) laminates. aluminum matrix composites chemical composition continuous metal matrix composites discontinuous metal matrix composites fiber metal laminates liquid metal infiltration slurry casting stir casting titanium matrix composites METAL MATRIX COMPOSITES (MMCs) offer a number...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870179
EISBN: 978-1-62708-299-0
... Cross section of a continuous-fiber silicon carbide/aluminum composite Fig. 6 Typical microstructure of a cast aluminum-matrix composite containing 20vol% SiC. The reinforcements range in size from 10 to 20 μm. 125× Abstract Abstract This chapter discusses the ambient-temperature...
Abstract
This chapter discusses the ambient-temperature corrosion characteristics of aluminum metal-matrix composites (MMCs), including composites formed with boron, graphite, silicon carbide, aluminum oxide, and mica. It also discusses the effect of stress-corrosion cracking on graphite-aluminum composites and the use of protective coatings and design criteria for corrosion prevention.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.9781627083355
EISBN: 978-1-62708-335-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240607
EISBN: 978-1-62708-251-8
... effects and from the reinforcement being pushed by an advancing solidification front. Proper stirring helps to prevent many of these problems. Matrix alloys include aluminum-silicon casting compositions specially designed for MMC processing. Reinforcements include 10 to 20 μm- (0.4 to 0.80 mil)-sized...
Abstract
Metal-matrix composites (MMCs) work at higher temperatures than their base metal counterparts and can be engineered for improved strength, stiffness, thermal conductivity, abrasion and/or creep resistance, and dimensional stability. This chapter examines the properties, compositions, and performance-cost tradeoffs of common MMCs, including aluminum-matrix composites, titanium-matrix composites, and fiber-metal laminates. It also explains how fiber-reinforced composites and laminates are made, describing both continuous and discontinuous fiber matrix production processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550457
EISBN: 978-1-62708-307-2
.... , and Hashmi M.S.J. , Metal Matrix Composites: Production by the Stir Casting Method , J. Mater. Process. Technol. , Vol 92–93 , 1999 , p 1 – 7 10.1016/S0924-0136(99)00118-1 • Hashim J. , Looney L. , and Hashmi M.S.J. , The Wettability of SiC Particles by Molten Aluminum Alloy...
Abstract
Metal-matrix composites can operate at higher temperatures than their base metal counterparts and, unlike polymer-matrix composites, are nonflammable, do not outgas in a vacuum, and resist attack by solvents and fuels. They can also be tailored to provide greater strength and stiffness, among other properties, in preferred directions and locations. This chapter discusses the processes and procedures used in the production of fiber-reinforced aluminum and titanium metal-matrix composites. It explains how the length and orientation of reinforcing fibers affect the properties and processing characteristics of both aluminum and titanium composites. It also provides information on fiber-metal laminates and the use of different matrix metals and reinforcing materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
.... However, their extremely high material and fabrication costs currently prohibit their application. Fig. 1.23 Cast discontinuous aluminum-matrix composites. (a) An Al-SiC p composite brake rotor. (b) Aluminum-SiC microwave radio-frequency packaging for communication satellites. Source: Ref 1.10...
Abstract
Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites. This chapter provides a brief overview of these lightweight materials, discussing their primary advantages along with their properties, behaviors, and limitations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
.... 2.3.6 Nomenclature System for Aluminum Metal-Matrix Composites Aluminum casting alloys are now regularly used as the matrix material in metal-matrix composites (MMC). The Aluminum Association, Inc, and ANSI H35.5 ( Ref 4 ) have published a standard nomenclature system for such composites...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240453
EISBN: 978-1-62708-251-8
... their compositional ranges, distinguishing features, advantages, limitations, and applications. cast iron cooling rate graphite formation cementite formation silicon aluminum nickel cobalt copper sulfur vanadium chromium tin molybdenum manganese microstructure white cast iron gray cast iron...
Abstract
The properties of cast iron are determined primarily by the form of carbon they contain, which in turn, is controlled by modifying compositions and cooling rates during casting. Certain alloys (such as Si, Al, Ni, Co, and Cu) promote graphite formation, while others (such as S, V, Cr, Sn, Mo, and Mn) promote the formation of cementite. This chapter examines the relative potencies of these alloys and their effect on microstructure. It covers the five most common commercial cast irons, including white, gray, ductile, malleable, and compacted graphite, describing their compositional ranges, distinguishing features, advantages, limitations, and applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550621
EISBN: 978-1-62708-307-2
...), engineering plastics, structural ceramics, and composites (polymer, metal, and ceramic matrix). The following sections give some general guidelines for selecting these materials. Five lightweight metal alloys were covered in this book: aluminum, magnesium, beryllium, titanium, and titanium aluminide...
Abstract
This chapter consists of three parts. The first part provides data and guidelines for selecting materials and processing routes. It compares the basic properties of metals, ceramics, and polymers, identifies important measures of performance, and discusses manufacturing processes and their compatibility with specific materials. The chapter then presents general guidelines for selecting lightweight materials, and concludes with a review of lightweight metals, plastics, and composites used in automotive applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060247
EISBN: 978-1-62708-261-7
... of alloy content for various types of alloy cast irons Table 10.7 Ranges of alloy content for various types of alloy cast irons Description Composition, wt% (a) Matrix structure, as-cast (c) TC (b) Mn P S Si Ni Cr Mo Cu Abrasion-resistant white irons Low-carbon white...
Abstract
The commercial relevance of cast irons is best understood in the context of the iron-carbon phase diagram, where their composition places them near the eutectic point, which sheds light on why they melt at lower temperatures than steel and why they can be cast into more intricate shapes. This chapter examines these unique properties and how they are derived. It begins by describing the basic metallurgy of cast iron, focusing on the eutectic reaction. It explains how to control the reaction and thus properties of cast iron by overcooling and inoculation. The chapter also discusses composition, microstructure, heat treatments, and the classification and casting characteristics of white, gray, ductile, malleable, compacted graphite, and special cast irons.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280025
EISBN: 978-1-62708-267-9
... in an austenitic fcc matrix. For alloys with titanium and aluminum, the strengthening precipitate is γ′. Such alloys are typified by the wrought alloys Waspaloy, Astroloy, U-700, and U-720, or the cast alloys Rene 80, Mar-M-247, and IN-713. For niobium-strengthened nickel-base superalloys, the strengthening...
Abstract
This chapter describes the metallurgy of superalloys and the extent to which it can be controlled. It discusses the alloying elements, crystal structures, and processing sequences associated with more than a dozen phases that largely determine the characteristics of superalloys, including their properties, behaviors, and microstructure. It examines the role of more than 20 alloying elements, including phosphorus (promotes carbide precipitation), boron (improves creep properties), lanthanum (increases hot corrosion resistance), and carbon and tungsten which serve as matrix stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170091
EISBN: 978-1-62708-297-6
... to –0.35 (a) ΔS: final % S –0.34 (% residual elements) –1.33 (% Mg) Alloying elements, such as copper, tin, molybdenum, and even aluminum, can be used to change the as-cast matrix of CG iron from ferrite to pearlite. Typical ranges are 0.48% Cu or 0.033% Sn, 0.5 to 1% Mo, and up to 4.55% Al...
Abstract
This article discusses the composition and morphology of compacted graphite (CG) iron relative to that of gray and ductile iron. It explains that the graphite in CG iron is intermediate in shape between the spheroidal graphite found in ductile iron and the flake graphite in gray iron, giving it distinct advantages in a number of applications. The article also discusses the role of melt treatment elements and explains how alloying and heat treatment affect tensile strength, hardness, toughness, and ductility.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030245
EISBN: 978-1-62708-349-2
... foil on the surface of the composite part significantly reduced the damage. To further analyze the area under the strike zone, the damaged area was impregnated under vacuum with a low-viscosity epoxy casting resin. No contrast dye was added to the casting resin. The first layer of expanded aluminum...
Abstract
Lightning damage in polymer composites, as in metal structures, is manifested by damage at both the macroscopic or visual level and within the material microstructure. In addition to visual damage assessment, non-destructive inspection techniques are employed to detect damage within the composite part. This chapter describes the macroeffects of a lightning strike on composites and discusses the methods involved in the assessment of microstructural damage in composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240563
EISBN: 978-1-62708-251-8
... compositions are cast, they can be used to the highest homologous temperature ( T / T m ) of any common alloy system. Many nickel-base superalloys contain 10 to 20 wt% Cr, a combined aluminum and titanium content up to 8 wt%, 5 to 15 wt% Co, and small amounts of boron, zirconium, magnesium, and carbon...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys designed for high-temperature applications, generally above 540 deg C. This chapter covers the metallurgy, composition, and properties of cast and wrought superalloys. It provides information on melting, heat treating, and secondary fabrication processes. It also covers coating technology, including aluminide diffusion and overlay coatings, and addresses the advantages and disadvantages of superalloys in various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170062
EISBN: 978-1-62708-297-6
.... As-cast matrix microstructures usually consist of ferrite, pearlite, or both, depending on the cast section size and/or alloy composition. Common heat treatments and their purposes and resulting microstructures include: Annealing, to improve ductility and toughness, reduce hardness, and remove carbides...
Abstract
This article discusses the metallurgy and properties of ductile cast iron. It begins with an overview of ductile or spheroidal-graphite iron, describing the specifications, applications, and compositions. It then discusses the importance of composition control and explains how various alloying elements affect the properties, behaviors, and processing characteristics of ductile iron. The article describes the benefits of nickel and silicon additions in particular detail, explaining how they make ductile iron more resistant to corrosion, heat, and wear.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190vii
EISBN: 978-1-62708-296-9
... for various industries, including automotive and aerospace ( Table 1 ). Technical destination of aluminum-silicon casting alloys Table 1 Technical destination of aluminum-silicon casting alloys Designation according to chemical composition Numerical designation/grade (a) Numerical designation...
Abstract
This chapter provides an overview of the microstructure-property relationships associated with aluminum-silicon alloys. It includes information on commercial designations and grades, phase compositions, solidification paths, alloying elements, and intermetallic phases. It also provides solubility data and maps out the topics covered in subsequent chapters in the book.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420087
EISBN: 978-1-62708-310-2
... of a regular microstructure becomes impossible. The two eutectic alloys of greatest practical importance, iron-carbon (cast iron) and aluminum-silicon, belong to this category. Fig. 5.14 Irregular “Chinese script” eutectic consisting of faceted Mg 2 Sn phase (dark) in a magnesium matrix. Etched...
Abstract
This chapter begins by presenting a generic eutectic phase diagram and identifying critical points, lines, and features. It then describes the composition and properties of aluminum-silicon and lead-tin eutectic systems, the characteristics of eutectic morphologies, the solidification and scale of eutectic structures, and the competitive growth of dendrites and eutectic colonies or cells. It also examines the different types of precipitation structures that form during slow cooling cycles.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000025
EISBN: 978-1-62708-313-3
... compounds, such as γ′ and γ″ for strengthening, and allows the dissolution of high-melting-point refractories ( Ref 5 ). The main element present in the matrix-phase composition is the superalloy base metal, but there is also a high percentage of solid-solution elements, such as cobalt (or nickel...
Abstract
The microstructure of superalloys is highly complex, with a large number of dispersed intermetallics and other phases that modify alloy behavior through their composition, morphology, and distribution. This chapter provides an overview of the most notable phases, including the matrix phase and geometrically and topologically close-packed phases, and describes how superalloy microstructure can be modified via heat treatments and directional solidification. It also discusses the role of carbides, borides, oxides, and nitrides and the detrimental effects of sulfocarbides.