1-20 of 481 Search Results for

cast alloy designation system

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
... in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060291
EISBN: 978-1-62708-261-7
... discusses the classification, composition, properties, treatments, and applications of austenitic, ferritic, martensitic, duplex, precipitation-hardening, powder metallurgy, and cast stainless steels. It also reviews the history of stainless steels and provides information on alloy designation systems...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.9781627083355
EISBN: 978-1-62708-335-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410103
EISBN: 978-1-62708-280-8
... 6.1 Engineering Product Design 6.1.1 Parting Plane Cooling System should Avoid the Ejector Pins Die Cavity Positioning 6.1.3 Drafts for Aluminum Die Castings Selection of Casting-Cavity Part to be Cut into Ejector Location of Gates 6.1.10 Gate Pads Feeder Locations and Feeder...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400001
EISBN: 978-1-62708-258-7
..., and it consists of a letter followed by five digits. The system fully incorporates the AISI/SAE system. For example, the UNS designation for AISI/SAE 1040 is G10400. The letter “G” represents the AISI/SAE plain carbon and alloy steels. Other ferrous alloys have different letters, such as “F” for cast irons...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
.... It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410029
EISBN: 978-1-62708-280-8
... resin slices fused together FDM—fused deposition modeling FDM—prototypes made of ABS plastic Design verification Assembly verification Combination potential Machining fixture check Product shape creation Alloy same as production Process is less critical Lost SLA investment ceramic shell casting...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.9781627082808
EISBN: 978-1-62708-280-8
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260119
EISBN: 978-1-62708-336-2
.... , and Newberry V.J. , Modular Mold System for Casting Extrusion Ingots , Proc. Fifth International Aluminum Extrusion Technology Seminar , Vol 1 , Aluminum Association and Aluminum Extruders Council , 1992 . 3. Wagstaff R.B. and Ekenes J.M. , Innovations in Hard Alloy Hot Top Casting...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410151
EISBN: 978-1-62708-280-8
... water system schematic Fig. 7.35 Post-casting operations schematic Fig. 7.36 Stacking of front control arms on a heat treat rack Fig. 7.25 Feed rib in a differential carrier Fig. 7.26 (a) Isothermal plots before design change of feed pads, (b) isothermal plots...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.9781627083423
EISBN: 978-1-62708-342-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140021
EISBN: 978-1-62708-335-5
... technologies of importance for aluminum alloy castings that affect properties and performance are: A premium engineered casting is one that provides higher levels of quality and reliability than found in conventionally produced castings. Premium engineering includes intimately detailed design and control...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740047
EISBN: 978-1-62708-308-9
... the thermal gradient (often accomplished by increasing the solidification rate), which decreases the length of the mushy zone. This technique may be limited by alloy and mold thermal properties, and by casting geometry (i.e., the design of the casting). As long as the micropores are less than 0.2 mm (8...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
.... It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders. atomization foundry casting melting furnaces nonferrous casting alloys...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170432
EISBN: 978-1-62708-297-6
...Abstract Abstract This article examines the composition and properties of magnesium and its alloys. It discusses alloy and temper designations, applications and product forms, and commercial alloy systems, and explains how alloying elements affect physical and mechanical properties, processing...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300199
EISBN: 978-1-62708-323-2
...Alloy designation system Table 8.1 Alloy designation system Series Use Microstructure—Hardened 01, 2 Oil-hardened tools Martensite almost no carbides A2 to 7 Air-hardened tools Martensite matrix with moderate to massive (A7) carbides D2-7 Air-hardened dies...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720293
EISBN: 978-1-62708-305-8
.... However, this technique may be limited by alloy and mold thermal properties, and by casting geometry, that is, the design of the casting. As long as the micropores are less than 0.2 mm (0.008 in.) in length, there is no effect on dynamic properties; fatigue properties of castings with pores that size...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610585
EISBN: 978-1-62708-303-4
...) Micrograph of low-alloy steel shrinkage crack. Original magnification: 7.5×. (d) Optical micrograph of a hot tear in a casting. Original magnification: 200×. Source: Ref 5 Porosity Inclusions Oxide Films Second Phases Hot Tears Metal Penetration Surface Defects Design and Service...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140193
EISBN: 978-1-62708-335-5
... 2 alloy casting, designated area, at room temperature. Ramberg-Osgood parameter, n (tension) = 16. S basis design properties (originally presented in ksi) for strength class 2, designated area within casting: ultimate tensile strength, 345 MPa (50 ksi); tensile and compressive yield strength, 276...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410009
EISBN: 978-1-62708-280-8
... branches, early in the design cycle, is critical to their joint success. The casting engineer contributes knowledge about the most suitable manufacturing process and the best alloy for the application. The product design engineer benefits from this information about the process and alloy options...