Skip Nav Destination
Close Modal
Search Results for
cardan shaft
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Search Results for cardan shaft
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Failure of a Cardon Shaft
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270124
EISBN: 978-1-62708-301-0
... that a considerable amount of rubbing occurred after the shaft broke. SEM fractography revealed deformation marks and elongated dimples, typical of shear overloads, along with other details. Based on their analysis, investigators concluded that the cardan shaft failed under torsional overload. They also cited a need...
Abstract
A cardon shaft operating in an aircraft engine failed and was taken out and analyzed to determine the cause. A photograph of the broken shaft in the as-received condition shows the location and orientation of the fracture. The fracture surface appeared smooth, indicating that a considerable amount of rubbing occurred after the shaft broke. SEM fractography revealed deformation marks and elongated dimples, typical of shear overloads, along with other details. Based on their analysis, investigators concluded that the cardan shaft failed under torsional overload. They also cited a need for a more detailed examination of the driven end of the shaft.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980009
EISBN: 978-1-62708-342-3
Abstract
The hot-working process extrusion is used to produce semifinished products in the form of bar, strip, and solid sections, as well as tubes and hollow sections. The first part of this chapter describes the composition, properties, and applications of tin and lead extruded products with a deformation temperature range of 0 to 300 deg C and magnesium and aluminum extruded products with a working temperature range of 300 to 600 deg C. The second part focuses on copper alloy extruded products, extruded titanium alloy products, and extruded products in iron alloys with a working temperature range of 600 to 1300 deg C.