Skip Nav Destination
Close Modal
Search Results for
carbon
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 3197 Search Results for
carbon
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560413
EISBN: 978-1-62708-353-9
... Abstract This appendix contains tables listing the chemical compositions of standard carbon H-steels and standard carbon boron H-steels and the hardenability characteristics of alloys. This appendix is a reprint of tables giving compositions of standard carbon H-steels and standard carbon...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440097
EISBN: 978-1-62708-262-4
... Abstract This chapter explains the definition of carbon steels and lists the Unified Numbering System designations and the compositions that are universally accepted by steel producers and fabricators. Compositions of higher hardenability carbon steels (higher manganese grades and/or boron...
Abstract
This chapter explains the definition of carbon steels and lists the Unified Numbering System designations and the compositions that are universally accepted by steel producers and fabricators. Compositions of higher hardenability carbon steels (higher manganese grades and/or boron treated steels) are also discussed, as well as those of free-machining carbon steels. Detailed heat treating procedures are presented for a representative group of carbon steels. The processes involved in tempering and austempering of carbon steels are also discussed.
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820013
EISBN: 978-1-62708-339-3
... Abstract Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld...
Abstract
Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld and heat-affected zone (HAZ), solid-state phase transformations during welding, control of toughness in the HAZ, the effects of preheating and postweld heat treatment, and weld discontinuities. This chapter provides information on the classification of steels and the welding characteristics of each class. It describes the issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The major forms of environmentally assisted cracking affecting weldment corrosion are covered. The chapter concludes with a discussion of the effects of welding practice on weldment corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310095
EISBN: 978-1-62708-326-3
... Abstract This chapter describes the designations of carbon and low-alloy steels and their general characteristics in terms of their response to hardening and mechanical properties. The steels covered are low-carbon steels, higher manganese carbon steels, boron-treated carbon steels, H-steels...
Abstract
This chapter describes the designations of carbon and low-alloy steels and their general characteristics in terms of their response to hardening and mechanical properties. The steels covered are low-carbon steels, higher manganese carbon steels, boron-treated carbon steels, H-steels, free-machining carbon steels, low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, and low-alloy silicon-manganese steels. The chapter provides information on residual elements, microalloying, grain refinement, mechanical properties, and grain size of these steels. In addition, the effects of free-machining additives are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310203
EISBN: 978-1-62708-326-3
... and the applications of particular types or grades of carbon and low-alloy steels. The discussion covers carbon steel classification for heat treating, tempering of quenched carbon steels, and austempering of steel. In addition, the chapter discusses the effects of alloying and hardenability on steel and provides...
Abstract
Heat treatment of steel involves a number of processes to condition the microstructure and obtain desired properties. This includes various methods namely, annealing, normalizing, and hardening by quenching and tempering. This chapter focuses on general heat treatment procedures and the applications of particular types or grades of carbon and low-alloy steels. The discussion covers carbon steel classification for heat treating, tempering of quenched carbon steels, and austempering of steel. In addition, the chapter discusses the effects of alloying and hardenability on steel and provides information on martempering of steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090043
EISBN: 978-1-62708-266-2
... Abstract This chapter addresses the issue of stress-corrosion cracking (SCC) in carbon and low-alloy steels. It discusses crack initiation, propagation, and fracture in aqueous chloride, hydrogen sulfide, sulfuric acid, hydroxide, ammonia, nitrate, ethanol, methanol, and hydrogen gas...
Abstract
This chapter addresses the issue of stress-corrosion cracking (SCC) in carbon and low-alloy steels. It discusses crack initiation, propagation, and fracture in aqueous chloride, hydrogen sulfide, sulfuric acid, hydroxide, ammonia, nitrate, ethanol, methanol, and hydrogen gas environments. It explains how composition and microstructure influence SCC, as do mechanical properties such as strength and fracture toughness and processes such as welding and cold work. It also discusses the role of materials selection and best practices for welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030089
EISBN: 978-1-62708-282-2
... Abstract This chapter describes issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The forms of corrosion covered includes preferential heat affected zone corrosion, preferential weld metal corrosion, and galvanic corrosion...
Abstract
This chapter describes issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The forms of corrosion covered includes preferential heat affected zone corrosion, preferential weld metal corrosion, and galvanic corrosion. Industrial case studies demonstrating the necessity for testing each galvanic couple in the environment for which it is intended are presented. The chapter also discusses various factors associated with stress-corrosion cracking in oil refineries.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170123
EISBN: 978-1-62708-297-6
... Abstract This article discusses the role of alloying in the production and use of carbon and low-alloy steels. It explains how steels are defined and selected based on alloy content and provides composition and property data for a wide range of designations and grades. It describes the effect...
Abstract
This article discusses the role of alloying in the production and use of carbon and low-alloy steels. It explains how steels are defined and selected based on alloy content and provides composition and property data for a wide range of designations and grades. It describes the effect of alloying on structure and composition and explains how alloy content can be controlled to optimize properties and behaviors such as ductility, strength, toughness, fatigue and fracture resistance, and resistance to corrosion, wear, and high-temperature creep. It also examines the effect of alloying on processing characteristics such as hardenability, formability, weldability, machinability, and temper embrittlement. In addition, the article provides an extensive amount of engineering data with relevance in materials selection.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130585
EISBN: 978-1-62708-284-6
... Abstract This appendix presents an iron-carbon equilibrium diagram illustrating various phases a particular alloy of iron and carbon will go through when allowed to cool down to room temperature. iron-carbon equilibrium diagram Fig. A9.1 Iron-carbon equilibrium diagram from Metal...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
... Abstract This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.9781627082914
EISBN: 978-1-62708-291-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410293
EISBN: 978-1-62708-265-5
... Medium-carbon steels are typically hardened for high-strength, high-fatigue-resistant applications by austenitizing, quenching to martensite, and tempering. This chapter explains how microalloying with vanadium, niobium, and/or titanium provides an alternate way to improve the mechanical...
Abstract
Medium-carbon steels are typically hardened for high-strength, high-fatigue-resistant applications by austenitizing, quenching to martensite, and tempering. This chapter explains how microalloying with vanadium, niobium, and/or titanium provides an alternate way to improve the mechanical properties of such steels. It also addresses microalloyed forging steels and explains how nontraditional bainitic microstructures can be produced by direct cooling after forging.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410315
EISBN: 978-1-62708-265-5
...,” and Chapter 13, “Normalizing, Annealing, and Spheroidizing Treatments; Ferrite/Pearlite and Spherical Carbides,” which have shown that as microstructure becomes fully pearlitic as steel carbon content approaches the eutectoid composition, around 0.80% carbon, strength increases, but resistance to cleavage...
Abstract
This chapter describes the mechanical properties of fully pearlitic microstructures and their suitability for wire and rail applications. It begins by describing the ever-increasing demands placed on rail steels and the manufacturing methods that have been developed in response. It then explains how wire drawing, patenting, and the Stelmor process affect microstructure, and describes various fracture mechanisms and how they appear on steel wire fracture surfaces. The chapter concludes by discussing the effects of torsional deformation, delamination, galvanizing, and aging on patented and drawn wires.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410405
EISBN: 978-1-62708-265-5
... in low-carbon steels. It also discusses the effect of tempering temperature on the mechanical behavior and deformation properties of medium-carbon steels. deformation fracture microstructure tempering CHAPTER 16, “Hardness and Hardenability,” and Chapter 17, “Tempering of Steel...
Abstract
Steels with martensitic and tempered martensitic microstructures, though sometimes perceived as brittle, exhibit plasticity and ductile fracture behavior under certain conditions. This chapter describes the alloying and tempering conditions that produce a ductile form of martensite in low-carbon steels. It also discusses the effect of tempering temperature on the mechanical behavior and deformation properties of medium-carbon steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410233
EISBN: 978-1-62708-265-5
... This chapter discusses various alloying and processing approaches to increase the strength of low-carbon steels. It describes hot-rolled low-carbon steels, cold-rolled and annealed low-carbon steels, interstitial-free or ultra-low carbon steels, high-strength, low-alloy (HSLA) steels, dual-phase...
Abstract
This chapter discusses various alloying and processing approaches to increase the strength of low-carbon steels. It describes hot-rolled low-carbon steels, cold-rolled and annealed low-carbon steels, interstitial-free or ultra-low carbon steels, high-strength, low-alloy (HSLA) steels, dual-phase (DP) steels, transformation-induced plasticity (TRIP) steels, and martensitic low-carbon steels. It also discusses twinning-induced plasticity (TWIP) steels along with quenched and partitioned (Q&P) steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560039
EISBN: 978-1-62708-291-4
... Abstract This chapter discusses the composition and structure of low-carbon irons and steels, particularly those used in the production of hot-rolled strip. It describes the manufacturing process from the production of ingots to coiling, and it explains how finishing and coiling temperatures...
Abstract
This chapter discusses the composition and structure of low-carbon irons and steels, particularly those used in the production of hot-rolled strip. It describes the manufacturing process from the production of ingots to coiling, and it explains how finishing and coiling temperatures affect ferritic grain size and the distribution of cementite particles. It also discusses subsequent processing, including cold rolling and annealing, and the parameters with the greatest impact on grain size and microstructure. In addition, it describes the production of enameling irons, the benefits of high-temperature heat treatments, and the effects of quench and strain aging.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560081
EISBN: 978-1-62708-291-4
... Abstract This chapter covers a broad range of low-carbon steels optimized for structural applications. Low-carbon structural steels are generally considered the highest-strength steels that can be welded without undue difficulty, even in the field. They include mild steels, carbon-manganese...
Abstract
This chapter covers a broad range of low-carbon steels optimized for structural applications. Low-carbon structural steels are generally considered the highest-strength steels that can be welded without undue difficulty, even in the field. They include mild steels, carbon-manganese and niobium- and vanadium-containing steels, and high-strength low-alloy steels. Chapter 5 discusses the composition, microstructure, and properties of these workhorse materials and explains how to identify the cause of production-related issues such as lamellar tearing and ferrite-pearlite banding. It also describes some of the alloying variations that have been developed to improve machinability and the mechanisms by which they work.
Book Chapter