Skip Nav Destination
Close Modal
Search Results for
capacitor tuning
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17 Search Results for
capacitor tuning
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Tuning of Induction Heating Circuits and Load Matching
> Elements of Induction Heating: Design, Control, and Applications
Published: 01 June 1988
Fig. 3.8 Schematic illustration of a capacitor bank used in tuning induction heating circuits for low- and medium-frequency induction heating power supplies. From C. A. Tudbury, Basics of Induction Heating , Vol 2, John F. Rider, Inc., New York, 1960 ( Ref 2 )
More
Image
in Tuning of Induction Heating Circuits and Load Matching
> Elements of Induction Heating: Design, Control, and Applications
Published: 01 June 1988
Fig. 3.6 Typical water-cooled capacitors used to tune low- to medium-frequency induction heating circuits. From P. H. Brace, Induction Heating Circuits and Frequency Generation, in Induction Heating , ASM, Metals Park, OH, 1946, p 36 ( Ref 1 )
More
Image
in Tuning of Induction Heating Circuits and Load Matching
> Elements of Induction Heating: Design, Control, and Applications
Published: 01 June 1988
Fig. 3.7 Typical ceramic capacitors used to tune induction heating circuits Source: Lindberg Cycle-Dyne, Inc.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220027
EISBN: 978-1-62708-341-6
... tuned. The chapter describes these procedures, including the processes involved in tuning induction heating circuits and load matching, impedance matching by means of a transformer, and tuning used for specific types of power supplies. capacitor tuning impedance matching induction heating...
Abstract
This chapter focuses on the transfer of energy between the power supply and the induction heating coil. The most efficient transfer requires that the induction heated load and coil be matched to the power supply and that the electrical circuit containing these elements be properly tuned. The chapter describes these procedures, including the processes involved in tuning induction heating circuits and load matching, impedance matching by means of a transformer, and tuning used for specific types of power supplies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050025
EISBN: 978-1-62708-311-9
... Abstract This chapter discusses the basic components in an induction heat treating system. It describes the design and operating characteristics of power supplies, load-matching transformers, tuning capacitors, power regulators, controllers, process monitors, and diagnostic systems. It also...
Abstract
This chapter discusses the basic components in an induction heat treating system. It describes the design and operating characteristics of power supplies, load-matching transformers, tuning capacitors, power regulators, controllers, process monitors, and diagnostic systems. It also provides information on fixtures and work-handling devices, quench systems, and load matching and tuning procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220047
EISBN: 978-1-62708-341-6
... in the transmission lines. The transmission voltage used is limited to the inverter voltage unless a transformer is applied at the power source. With a series circuit, the coil voltage is a function of the Q value of the circuit and can be quite high, necessitating the use of high-voltage capacitors for tuning...
Abstract
Besides the induction coil and workpiece, the induction generator (source of ac power) is probably the most important component of an overall induction heating system. Such equipment is typically rated in terms of its frequency and maximum output power (in kilowatts). This chapter addresses the selection of power supplies in terms of these two factors as well as the operational features of different types of sources. The six different types of power supplies for induction heating applications covered in this chapter are line-frequency supplies, frequency multipliers, motor-generators, solid-state (static) inverters, spark-gap converters, and radio-frequency power supplies. The chapter discusses the design and characteristics of each of the various types of power supplies.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050301
EISBN: 978-1-62708-311-9
... tains any necessary transformers and capacitors for load matching and tuning. Some power supplies have the heat station built in, and others require external heat stations. The induction coil is attached at the out- put side of the heat station. hertz (Hz). Same as frequency. The line frequency...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.9781627083119
EISBN: 978-1-62708-311-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050001
EISBN: 978-1-62708-311-9
.... The first induction heaters sold by General Electric during World War II had rectifier tubes for the conversion of the alternating current (ac) to direct current (dc). Output control and tuning were accomplished through a combination of different taps on the output of the tank coil and a control knob...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220185
EISBN: 978-1-62708-341-6
... of tank capacitors needed to tune the resonant circuit at the operating frequency. Generally, the lower the frequency, the larger the coil or the greater the number of turns. [1] When low-inductance coils are occasionally required, isolation transformers can be used to match the coil impedance...
Abstract
Coil design for induction heating has been developed and refined over time based on the theoretical principles applied in practice to several simple inductor geometries such as the classical solenoidal coil. This chapter reviews the fundamental considerations in the design of inductors and describes some of the most widely used coils and common design modifications. Specialty coil designs for specific applications are also discussed. The chapter concludes with sections devoted to coil fabrication and design of power-supply leads.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110563
EISBN: 978-1-62708-247-1
... relative to a backplate (the two sides of the capacitor), and the resulting time-varying change in capacitance is read electrically. This time-varying capacitance becomes the electrical signal that can be digitized and eventually converted back to sound with a speaker. Because of their low cost, small size...
Abstract
This chapter discusses the various failure analysis techniques for microelectromechanical systems (MEMS), focusing on conventional semiconductor manufacturing processes and materials. The discussion begins with a section describing the advances in integration and packaging technologies that have helped drive the further proliferation of MEMS devices in the marketplace. It then shows some examples of the top MEMS applications and quickly discusses the fundamentals of their workings. The next section describes common failure mechanisms along with techniques and challenges in identifying them. The chapter also provides information on the testing of MEMS devices. It covers the two common challenges in sample preparation for MEMS: decapping, or opening up the package, without disturbing the MEMS elements; and removing MEMS elements for analysis. Finally, the chapter discusses the aspects of failure analysis techniques that are of particular interest to MEMS.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860075
EISBN: 978-1-62708-348-5
Abstract
Specific heat and thermal expansion are closely related. Following a discussion on thermal expansion theory, methods of measurement techniques are presented along with their advantages and disadvantages. The results of the measurements are then summarized for three classes of materials: metallics, nonmetallics, and composites. Because predicting thermal expansion values for unmeasured or novel materials is useful, the chapter also describes the means of making educated guesses for low-temperature values. A short discussion on how thermal expansion data can be used is followed by a section describing where such data can be found.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110351
EISBN: 978-1-62708-247-1
... or shifting one clock cycle because FIB methods to speed up signals are quite complex [14] . This delay is often accomplished through depositing a FIB metal over silicon (MOS) capacitor and attaching it the critical signal line or trimming transistor gates from a multi-leg device. Both of these methods...
Abstract
Circuit edit has been instrumental to the development of focused ion beam (FIB) systems. FIB tools for advanced circuit edit play a major role in the validation of design and manufacture. This chapter begins with an overview of value, role, and unique capabilities of FIB circuit edit tools for first silicon debug. The etching capabilities of circuit edit FIB tools are then discussed, providing information on chemistry assisted etching in silicon oxides and low-k dielectrics. The chapter also discusses the requirements and procedures involved in edit operation: high aspect ratio milling, endpointing, and cutting copper. It then provides an introduction to FIB metal/conductor deposition and FIB dielectric deposition. Edit design rules that can facilitate prototype production from first silicon are also provided. The chapter concludes with a discussion on future trends in circuit edit technology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290111
EISBN: 978-1-62708-319-5
... of capacitors, microelectronic substrates, porous tubes, casting filters, welding rods, diesel engine particulate filters, and automobile exhaust catalytic converter substrates. Figure 6.15 shows segments of extruded honeycomb produced by chopping a long structure. Porous metallic tubes have been produced...
Abstract
The conversion of feedstock into a shape involves the application of heat and pressure, and possibly solvents. This chapter discusses the operating principle, advantages, limitations, and applications of such shaping processes, namely additive manufacturing, cold isostatic pressing, die compaction, extrusion, injection molding, slip casting, slurry processes, and tape casting. Information on equipment setup, requirements, and the various factors influencing these processes are described. In addition, the chapter provides information on novel approaches and processing costs applicable to these shaping processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110244
EISBN: 978-1-62708-247-1
... examples of identifying defects through LVP-inspired optoelectronic mapping (i.e. thru free-carrier or electro-optical effects). It should be noted here that even after the implementation of such image-based techniques is complete, LVP is usually still required to fine-tune the analyst’s understanding...
Abstract
Laser Voltage Probing (LVP) is a key enabling technology that has matured into a well-established and essential analytical optical technique that is crucial for observing and evaluating internal circuit activity. This article begins by providing an overview on LVP history and LVP theory, providing information on electro-optical effects and free-carrier effects. It then focuses on commercially available continuous wave LVP systems. Alternative optoelectronic imaging and probing technologies for fault isolation, namely frequency mapping and laser voltage tracing, are also discussed. The subsequent section provides information on the use of Visible Laser Probing. The article closes with some common LVP observations/considerations and limitations and future work concerning LVP.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6