1-20 of 688 Search Results for

brittle fracture

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630081
EISBN: 978-1-62708-270-9
... Abstract A brittle fracture occurs at stresses below the material's yield strength (i.e., in the elastic range of the stress-strain diagram). This chapter focuses on brittle fracture in metals and, more specifically, ferrous alloys. It lists the factors that must all be present simultaneously...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610055
EISBN: 978-1-62708-303-4
... Abstract This chapter discusses the causes and effects of ductile and brittle fracture and their key differences. It describes the characteristics of ductile fracture, explaining how microvoids develop and coalesce into larger cavities that are rapidly pulled apart, leaving bowl-shaped voids...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630071
EISBN: 978-1-62708-270-9
... in ductile and brittle metals. brittle metals ductile metals single-load fracture stress tension loading torsional loading compression loading IN ORDER TO UNDERSTAND how various types of single-load fractures are caused, one must understand the forces acting on the metals and also...
Image
Published: 01 August 2018
Fig. 17.79 (a) Ductile fracture and (b) brittle fracture in ductile cast iron. SE, SEM. Not etched. The aspect of graphite and its role in the fracture process are evident. Courtesy of J. Sertucha, Azterlan, Centro de Investigacion Metalurgica, Durango, Bizkaia, Spain. More
Image
Published: 01 November 2012
Fig. 23 Surface of a torsional fatigue fracture that caused brittle fracture of the case of an induction-hardened axle of 1541 steel. The fatigue crack originated (arrow) at a fillet (with a radius smaller than specified) at a change in shaft diameter near a keyway runout. Case hardness More
Image
Published: 01 November 2012
Fig. 27 Brittle fracture of D6B steel equalizer bar. (a) Fracture surface of a large (~13.3 × 15 cm, or 5.25 × 6 in.) equalizer bar made from D6B steel heat treated to a hardness of 45–47 HRC. This bar, which supports the front end of a large crawler tractor, was in service for approximately More
Image
Published: 01 December 1989
Fig. 2.23. Decrease of critical flaw size for brittle fracture of a 2¼Cr-1Mo reactor vessel at 10 °C (50 °F) due to temper embrittlement ( Ref 65 ). More
Image
Published: 01 March 2006
Fig. 9.1 Brittle fracture of a welded World War II ship More
Image
Published: 01 March 2006
Fig. 9.2 Devastation caused by brittle fracture of liquid natural gas tank in Cleveland, Ohio, Oct 1944 More
Image
Published: 01 March 2006
Fig. 9.3 Catastrophic brittle fracture of a 260 in. diam rocket motor case during hydrotest. Failure occurred unexpectedly at about 50% of design pressure. Note size of case compared to the 6 ft tall men. More
Image
Published: 01 August 2018
Fig. 9.82 Cross section through the brittle fracture region of the heat-affected zone of a weld in a structural steel with 490 MPa (71 ksi) strength. Fracture close to the fusion line in an electrogas (high heat-input) weld. The large austenitic grain size and the layer of pro-eutectoid More
Image
Published: 30 November 2013
Fig. 2 Sketch of pattern of brittle fracture of a normally ductile steel plate, sheet, or flat bar. Note the classic chevron or herringbone marks that point toward the origin of the fracture, where there usually is some type of stress concentration, such as a welding defect, fatigue crack More
Image
Published: 30 November 2013
Fig. 5 Surface of a torsional fatigue crack that caused brittle fracture of the case of an induction-hardened axle of 1541 steel. The fatigue crack originated (arrow) at a fillet (with a radius smaller than specified) at a change in shaft diameter near a keyway runout. Case hardness was about More
Image
Published: 30 November 2013
Fig. 7 Surface of a brittle fracture in a cold-drawn, stress-relieved 1035 steel axle tube. Fracture originated at a weld defect (arrow) during testing in very cold weather. Note the well-defined chevron marks located clockwise from the arrow, pointing back toward the origin. Note also More
Image
Published: 30 November 2013
Fig. 8 (a) Catastrophic brittle fracture of a 260 in. diam solid-propellant rocket motor case made of 18% Ni, grade 250, maraging steel. The case fractured at a repaired weld imperfection during a hydrostatic pressure test. Fracture occurred at about 57% of the intended proof stress. All welds More
Image
Published: 30 November 2013
Fig. 9 (a) Sketch of pattern of brittle fracture in a moderately hard, strong metal. The fracture originated at a sharp stress concentration that grew to the critical flaw size for that metal. The sharp stress concentration is frequently, though not always, a fatigue crack or a stress More
Image
Published: 30 November 2013
Fig. 10 Origin (at arrow) of a single-load brittle fracture that initiated at a small weld defect. Note also a fatigue fracture in the upper right corner. Radial ridges emanate from the origin in a fan-shaped pattern. The brittle part of the fracture is bright and sparkling, in contrast More
Image
Published: 01 June 1983
Figure 7.17 Postulated temperature dependences of ductile and brittle fracture stresses showing effects of high strain rate and stress concentration. More
Image
Published: 01 December 2003
Fig. 26 Scanning electron image showing brittle fracture features at the crack initiation site, characteristic of environmental stress cracking. 24× More
Image
Published: 01 December 2003
Fig. 28 Scanning electron image showing brittle fracture features on the failed jacket crack surface. 20× More