Skip Nav Destination
Close Modal
Search Results for
brittle fracture
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 688 Search Results for
brittle fracture
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630081
EISBN: 978-1-62708-270-9
... Abstract A brittle fracture occurs at stresses below the material's yield strength (i.e., in the elastic range of the stress-strain diagram). This chapter focuses on brittle fracture in metals and, more specifically, ferrous alloys. It lists the factors that must all be present simultaneously...
Abstract
A brittle fracture occurs at stresses below the material's yield strength (i.e., in the elastic range of the stress-strain diagram). This chapter focuses on brittle fracture in metals and, more specifically, ferrous alloys. It lists the factors that must all be present simultaneously in order to cause brittle fracture in a normally ductile steel. The chapter then discusses the macroscale characteristics and microstructural aspects of brittle fracture. A summary of the types of embrittlement experienced by ferrous alloys is presented. The chapter concludes with a brief section providing information on mixed fracture morphology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610055
EISBN: 978-1-62708-303-4
... Abstract This chapter discusses the causes and effects of ductile and brittle fracture and their key differences. It describes the characteristics of ductile fracture, explaining how microvoids develop and coalesce into larger cavities that are rapidly pulled apart, leaving bowl-shaped voids...
Abstract
This chapter discusses the causes and effects of ductile and brittle fracture and their key differences. It describes the characteristics of ductile fracture, explaining how microvoids develop and coalesce into larger cavities that are rapidly pulled apart, leaving bowl-shaped voids or dimples on each side of the fracture surface. It includes SEM images showing how the cavities form, how they progress to final failure, and how dimples vary in shape based on loading conditions. The chapter, likewise, describes the characteristics of brittle fracture, explaining why it occurs and how it appears under various levels of magnification. It also discusses the ductile-to-brittle transition observed in steel, the characteristics of intergranular fracture, and the causes of embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630071
EISBN: 978-1-62708-270-9
... in ductile and brittle metals. brittle metals ductile metals single-load fracture stress tension loading torsional loading compression loading IN ORDER TO UNDERSTAND how various types of single-load fractures are caused, one must understand the forces acting on the metals and also...
Abstract
In order to understand how various types of single-load fractures are caused, one must understand the forces acting on the metals and also the characteristics of the metals themselves. All fractures are caused by stresses. Stress systems are best studied by examining free-body diagrams, which are simplified models of complex stress systems. Free-body diagrams of shafts in the pure types of loading (tension, torsion, and compression) are the simplest; they then can be related to more complex types of loading. This chapter discusses the principles of these simplest loading systems in ductile and brittle metals.
Image
Published: 01 August 2018
Fig. 17.79 (a) Ductile fracture and (b) brittle fracture in ductile cast iron. SE, SEM. Not etched. The aspect of graphite and its role in the fracture process are evident. Courtesy of J. Sertucha, Azterlan, Centro de Investigacion Metalurgica, Durango, Bizkaia, Spain.
More
Image
Published: 01 November 2012
Fig. 23 Surface of a torsional fatigue fracture that caused brittle fracture of the case of an induction-hardened axle of 1541 steel. The fatigue crack originated (arrow) at a fillet (with a radius smaller than specified) at a change in shaft diameter near a keyway runout. Case hardness
More
Image
Published: 01 November 2012
Fig. 27 Brittle fracture of D6B steel equalizer bar. (a) Fracture surface of a large (~13.3 × 15 cm, or 5.25 × 6 in.) equalizer bar made from D6B steel heat treated to a hardness of 45–47 HRC. This bar, which supports the front end of a large crawler tractor, was in service for approximately
More
Image
Published: 01 December 1989
Fig. 2.23. Decrease of critical flaw size for brittle fracture of a 2¼Cr-1Mo reactor vessel at 10 °C (50 °F) due to temper embrittlement ( Ref 65 ).
More
Image
Published: 01 March 2006
Image
Published: 01 March 2006
Fig. 9.2 Devastation caused by brittle fracture of liquid natural gas tank in Cleveland, Ohio, Oct 1944
More
Image
Published: 01 March 2006
Fig. 9.3 Catastrophic brittle fracture of a 260 in. diam rocket motor case during hydrotest. Failure occurred unexpectedly at about 50% of design pressure. Note size of case compared to the 6 ft tall men.
More
Image
in Conventional Heat Treatments—Usual Constituents and Their Formation
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 9.82 Cross section through the brittle fracture region of the heat-affected zone of a weld in a structural steel with 490 MPa (71 ksi) strength. Fracture close to the fusion line in an electrogas (high heat-input) weld. The large austenitic grain size and the layer of pro-eutectoid
More
Image
Published: 30 November 2013
Fig. 2 Sketch of pattern of brittle fracture of a normally ductile steel plate, sheet, or flat bar. Note the classic chevron or herringbone marks that point toward the origin of the fracture, where there usually is some type of stress concentration, such as a welding defect, fatigue crack
More
Image
Published: 30 November 2013
Fig. 5 Surface of a torsional fatigue crack that caused brittle fracture of the case of an induction-hardened axle of 1541 steel. The fatigue crack originated (arrow) at a fillet (with a radius smaller than specified) at a change in shaft diameter near a keyway runout. Case hardness was about
More
Image
Published: 30 November 2013
Fig. 7 Surface of a brittle fracture in a cold-drawn, stress-relieved 1035 steel axle tube. Fracture originated at a weld defect (arrow) during testing in very cold weather. Note the well-defined chevron marks located clockwise from the arrow, pointing back toward the origin. Note also
More
Image
Published: 30 November 2013
Fig. 8 (a) Catastrophic brittle fracture of a 260 in. diam solid-propellant rocket motor case made of 18% Ni, grade 250, maraging steel. The case fractured at a repaired weld imperfection during a hydrostatic pressure test. Fracture occurred at about 57% of the intended proof stress. All welds
More
Image
Published: 30 November 2013
Fig. 9 (a) Sketch of pattern of brittle fracture in a moderately hard, strong metal. The fracture originated at a sharp stress concentration that grew to the critical flaw size for that metal. The sharp stress concentration is frequently, though not always, a fatigue crack or a stress
More
Image
Published: 30 November 2013
Fig. 10 Origin (at arrow) of a single-load brittle fracture that initiated at a small weld defect. Note also a fatigue fracture in the upper right corner. Radial ridges emanate from the origin in a fan-shaped pattern. The brittle part of the fracture is bright and sparkling, in contrast
More
Image
Published: 01 June 1983
Figure 7.17 Postulated temperature dependences of ductile and brittle fracture stresses showing effects of high strain rate and stress concentration.
More
Image
in Characterization of Plastics in Failure Analysis[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 26 Scanning electron image showing brittle fracture features at the crack initiation site, characteristic of environmental stress cracking. 24×
More
Image
in Characterization of Plastics in Failure Analysis[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 28 Scanning electron image showing brittle fracture features on the failed jacket crack surface. 20×
More
1