1-20 of 109 Search Results for

brazing filler metal

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 November 2011
Fig. 7.1 Extensive flow capability of braze filler metal: (a) filler metal wire is placed around outer surface; (b) after brazing, filler metal has melted and flowed to close and seal all gaps. Source: Ref 7.1 More
Image
Published: 01 August 2005
Fig. 6.4 Sequential stages in diffusion brazing for a parent metal A and filler metal B that enter into a single eutectic reaction and do not form intermediate intermetallic compounds. In stage 1, at the commencement of heating, some interdiffusion occurs until melting commences at composition More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720411
EISBN: 978-1-62708-305-8
... metals and the types of flaws exhibited by brazed joints. brazed joints brazing filler metals eddy current inspection liquid penetrant inspection magnetic particle inspection nondestructive inspection radiographic inspection ultrasonic inspection visual inspection welding weldments...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290165
EISBN: 978-1-62708-306-5
... Abstract Brazing and soldering processes use a molten filler metal to wet the mating surfaces of a joint, with or without the aid of a fluxing agent, leading to the formation of a metallurgical bond between the filler and the respective components. This chapter discusses the characteristics...
Image
Published: 01 April 2013
Fig. 19 Incomplete penetration of filler metal (BAg-1) in a brazed joint between copper components. 20×. Source: Ref 1 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
..., and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals. arc welding...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280149
EISBN: 978-1-62708-267-9
... information on brazing processes, atmospheres, filler metals, and surface preparation procedures. It also includes examples of nickel-base welded components for aerospace use. brazing fusion welding solid-state welding superalloys transient liquid phase bonding Introduction General Aspects...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230401
EISBN: 978-1-62708-298-3
... be braze welded using either a gas-shielded electric arc or an electron beam as the heat source [ Keil et al. 1960 , ASM 1993 ]. Welds can be made with less than 30 wt% Al content, which requires proper melting of the beryllium edge. The best results are obtained using Al-12Si filler metal, which...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480265
EISBN: 978-1-62708-318-8
.... brazing mechanical fastening titanium alloys welding TITANIUM CAN BE JOINED by most methods common to the metals fabricating industry, including welding ( Ref 12.1 – 12.13 ), brazing, soldering, adhesive bonding, and mechanical fastening. Welding and mechanical fastening are used in many...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870161
EISBN: 978-1-62708-299-0
... of weldments in aluminum alloys is affected by the alloy being welded and by the filler alloy and welding process used. Galvanic cells that cause corrosion can be created because of corrosion potential differences among the base (parent) metal, the filler metal, and the heat-affected regions where...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170550
EISBN: 978-1-62708-297-6
... brazing filler metal alloys is described by various standards, most notably American Society of Mechanical Engineers (ASME) SFA5.8 and American Welding Society (AWS) A5.8, which give alloy designations in the form BAg- x These alloys are characterized by low melting temperatures and the ability to wet...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230207
EISBN: 978-1-62708-351-5
...Selected material combinations used for diffusion brazing Table 6.1 Selected material combinations used for diffusion brazing Substrate Filler metal Process temperature Remelt temperature Ref °C °F °C °F Alumina Cu/Ni/Cu interlayers 1150 1920 1400 2550 Shalz et al...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230143
EISBN: 978-1-62708-351-5
... Schematic illustration used to assess the ability of a braze to form void-free joints as a function of the joint thickness at constant joint width Fig. 4.31 Schematic illustration of the stress distribution in the filler metal of lap joints of short and long overlap. When stressed in shear...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230001
EISBN: 978-1-62708-351-5
... and spreading by the braze, despite widening of the melting range of the filler metal. Note: 316L stainless steel is sensitive to liquid metal embrittlement by copper-base brazing alloys. Adapted from Keller et al. [1990] Fig. 1.17 Effect of contact angle on fillet formation and joint filling. Low...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230047
EISBN: 978-1-62708-351-5
... 516 (a) 144 Al-Ag-Cu-Ge-Fe-Mn-Ni 412 (a) 248 (a) Authors’ own measurements Fig. 2.39 Melting point depression of silver that is obtained in traditional silver-base brazes as further constituents are added to the filler metal. Both cadmium-containing brazes and modern tin...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230221
EISBN: 978-1-62708-351-5
... A.H. et al. , 1993 . Direct Brazing of Silicon Nitride Ceramics to Copper Using Active Filler Metal , Proc. Conf. Trends in Welding Research , June 1 – 5 ( Gatlinburg, TN ), David S.A. and Vitek J.M. , Ed., p 1119 – 1127 • Eustathopoulos N. , Nicholas M.G...
Image
Published: 01 August 1999
Fig. 11.2 Brazed and braze-welded joints. (a) 0.10% C (0.09C-0.005SI-0.41 Mn, wt%). Brazed using a gas torch and silver solder (49.6Ag-15.0Cu-18.1 Zn-17.3Cd) as a filler metal. Nital. 250×. (b) 0.1% C (0.09C-0.005Si-0.43Mn, wt%). Furnace brazed using copper filler metal. Nital. 250×. (c More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230105
EISBN: 978-1-62708-351-5
... BCuP-3 91Cu-2Ag-7P 644 1191 785 1445 BCuP-6 (a) Alloy patented by Outokumpu, Finland Fig. 3.9 Tube-to-plate joint in aluminum engineering alloy components, torch brazed in air using a low-melting-point aluminum-base filler metal and commercially available flux Fig. 3.10...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000167
EISBN: 978-1-62708-312-6
.... Unlike welding, brazing does not involve remelting of the base metal. In brazing, only the filler metal melts, and the joining of components is achieved via partial diffusion of filler metal into the base metal. Brazing filler metal, by definition, must melt above 450 °C (840 °F) and below the melting...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each...