Skip Nav Destination
Close Modal
Search Results for
branching polymers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 78 Search Results for
branching polymers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730099
EISBN: 978-1-62708-283-9
... Abstract This chapter discusses the structural classifications, molecular configuration, degradation, properties, and uses of polymers. It describes thermoplastic and thermosetting polymers, degree of polymerization, branching, cross-linking, and copolymers. It also discusses glass transition...
Abstract
This chapter discusses the structural classifications, molecular configuration, degradation, properties, and uses of polymers. It describes thermoplastic and thermosetting polymers, degree of polymerization, branching, cross-linking, and copolymers. It also discusses glass transition temperatures, additives, and the effect of stretching on thermoplastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780003
EISBN: 978-1-62708-281-5
... to form a polymer. These variations in structure within the molecule may involve stereoisomerism, branching, molecular weight and distribution, end groups and impurities, and copolymerization. Polymer size is quantified primarily by molecular weight (MW), molecular-weight distribution (MWD), and branching...
Abstract
This introductory article describes the various aspects of chemical structure and composition that are important to an understanding of polymer properties and their eventual effect on the end-use performance of engineering plastics, namely thermoplastics and thermosets. The most important properties of polymers and the most significant influences of structure on those properties are covered. The article also includes some general information on the classification and naming of polymers and plastics.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320001
EISBN: 978-1-62708-357-7
... / Thermodynamics of Microstructures Amorphous carbon Graphite Carbon fiber Diamond Fullerene (a) Matter (b) Materials Fig. 1.1 The distinction between matter (characterized by structure) and materials (charac- terized by microstructure) a1: Single polymers Linear polymers Branched polymers b1: Crystalline polymers...
Abstract
This chapter explains the distinction between materials and matter through the concept of microstructure. It presents the history of matter science and the establishment of metallography. The chapter provides an overview of the progress of steel technology, progress in synthetic polymers and ceramics, and establishment and development of materials science.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.9781627083577
EISBN: 978-1-62708-357-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780146
EISBN: 978-1-62708-281-5
... in nonpolar polymers, such as polyethylene ( Ref 1 ). The diffusion of liquids is related to polymer structure and temperature and is independent of chain length but is inversely related to the size of the absorbate. The rate of diffusion is decreased by the presence of branches, pendant groups, or cross...
Abstract
This article discusses the chemical susceptibility of a polymeric material. The discussion covers significant absorption and transportation of an environmental reagent by the polymer; the chemical susceptibility of additives; and thermal degradation, thermal oxidative degradation, photo-oxidative degradation, environmental corrosion, and chemical corrosion of polymers. It also includes some of the techniques used to detect changes in structure during polymer exposure to hostile environments. In addition, the article describes the effects of environment on polymer performance, namely plasticization, solvation, swelling, environmental stress cracking, polymer degradation, surface embrittlement, and temperature effects.
Image
Published: 01 December 2015
Fig. 12 4137 steel (UNS G41370) bolts (hardness, 42 HRC) that failed by hydrogen-assisted stress-corrosion cracking caused by acidic chlorides from a leaking polymer solution. (a) Overall view of failed bolts. (b) Longitudinal section through one of the failed bolts in (a) showing multiple
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290035
EISBN: 978-1-62708-319-5
... sketch of a mixture of crystalline, amorphous, and branched structures Another variation in properties arises from the level of chain branching. Branched polymers are difficult to crystallize and exhibit lower density. For example, polyethylene has a density of 0.855 g/cm 3 if it is branched...
Abstract
Generally, binders consist of at least three ingredients: a backbone to provide strength (compounds such as polyethylene, polypropylene, ethylene vinyl acetate, and polystyrene); a filler, such as polyacetal and paraffin wax, to occupy space between particles; and additives, such as stearates, stearic acid, or magnesium stearate, as well as phosphates and sulfonates, to adjust viscosity, lubricate tooling, disperse particles, or induce binder wetting of the powder. In the case of binders deposited via ink jet printing, the binder contains solvents to lower the viscosity for easier jetting. The chapter provides a detailed description of these constituents. The requirements of a binder as well as the factors determining the physical and thermal properties of polymers are discussed. Then, two factors associated with solvation of polymers, namely solubility parameter and wetting, are covered. The chapter ends with information on the specification of polymers used in binders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780404
EISBN: 978-1-62708-281-5
... the limiting velocity in the material, the rapidly moving crack tends to branch into two or more cracks, thus increasing the rate of energy dissipation by creating additional fracture surface areas. For a material incapable of plastic deformation, such as glass or a polymer at a very low temperature...
Abstract
This article introduces the subject of fractography and how it is used in failure analysis. The discussion covers the structure of and fracture and crack-propagation behavior of polymeric materials, the distinction between the ductile and brittle fracture modes on the basis of macroscopic appearance, and the examination and interpretation of the features of fracture surfaces. In addition, the article considers several cases of field failure in various polymers to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
... decomposition temperature ( Ref 2 ). In contrast, thermoplastics, which consist of high-molecular-weight linear or branched polymer chains (not crosslinked), can be reshaped with the application of heat and pressure ( Ref 2 ). In relation to composite materials, the distinction between these types of matrices...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780028
EISBN: 978-1-62708-281-5
... properties of plastics, as shown in Table 4 . Polymer size is quantified primarily by molecular weight (MW), molecular-weight distribution (MWD), and branching. Effect of molecular weight on polyethylene Table 4 Effect of molecular weight on polyethylene Number of –CH 2 –CH 2 – units Molecular...
Abstract
This article describes in more detail the fundamental building-block level, atomic, then expands to a discussion of molecular considerations, intermolecular structures, and finally supermolecular issues. An explanation of important thermal, mechanical, and physical properties of engineering plastics and commodity plastics follows, and the final section briefly outlines the most common plastics manufacturing processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780329
EISBN: 978-1-62708-281-5
... Abstract This article provides a basic review of polymer photochemistry as it relates to the weatherability of engineering plastics, considering the chemistry induced by exposure to sunlight in open air. Elementary aspects of weatherability chemistry that are discussed include the light...
Abstract
This article provides a basic review of polymer photochemistry as it relates to the weatherability of engineering plastics, considering the chemistry induced by exposure to sunlight in open air. Elementary aspects of weatherability chemistry that are discussed include the light wavelengths responsible for polymer photochemistry, problems with artificial light sources, general photooxidation and specific photochemical reactions important in plastics, and the factors influencing the rate of degradation. The approaches used to stabilize plastics against photochemical damage, including ultraviolet light absorbers, oxidation inhibitors, and the use of protective coatings, are also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780115
EISBN: 978-1-62708-281-5
... molecular weight further because melt viscosity will increase rapidly, although there are occasional exceptions to this rule. The yield strength of PP decreases when molecular weight increases. Studies of morphology indicate that high molecular weight and branching reduce crystallinity. Polymers with high...
Abstract
This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing the determination of service temperature of a material. Representative examples of different types of engineering thermoplastics are discussed in terms of structure and thermal properties. The article also discusses the thermal and related properties of thermoset resin systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780089
EISBN: 978-1-62708-281-5
... for these materials. Chromatography The individual constituents of a thermoset can include resin monomers, curing agents, catalysts, stabilizers, plasticizers, fillers, cross-linked or branched polymers, and microgels. The technique or combination of techniques selected for a specific separation will be driven...
Abstract
This article focuses on characterization techniques used for analyzing the physical behavior and chemical composition of thermoset resins, namely chromatography and infrared spectroscopy. The main purpose is to give sufficient detail to permit the reader understand a particular test technique and its value to the thermoset resin field. Epoxy resins are emphasized in the examples because they dominate the airframe and aerospace industries. The article also provides information on two categories of characterization of the processing behavior of thermoset. The first studies the thermal properties of reactive thermoset systems, while the second utilizes these thermal characteristics as the basis for monitoring and control during processing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780238
EISBN: 978-1-62708-281-5
... of the crystallites within the amorphous phase or the polymer morphology is also important to the resistance of fatigue. For example, branched versions of PE offer decreased resistance, while very high-molecular-weight versions of PE with an enhanced level of tie molecules provide superior resistance to fatigue crack...
Abstract
This article reviews fatigue test methodologies, provides an overview of general fatigue behavior (crack initiation and propagation) in engineering plastics, and discusses some of the factors affecting the fatigue performance of polymers. In addition, it provides information on fractography that provides useful insight into the nature of fracture processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780199
EISBN: 978-1-62708-281-5
... Abstract This article describes the general aspects of and practical problems of failure analysis of creep, stress relaxation, and yielding for homogeneous polymers. The effect of temperature and strain rate on the relationship between yield point and elastic modulus and the aging effect...
Abstract
This article describes the general aspects of and practical problems of failure analysis of creep, stress relaxation, and yielding for homogeneous polymers. The effect of temperature and strain rate on the relationship between yield point and elastic modulus and the aging effect that polymers often undergo at room temperature are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780305
EISBN: 978-1-62708-281-5
... essentially determines whether the service life objective is met. The engineer who wishes to work with thermoplastics in a given environment needs to consider particular questions and problems: Why certain environments promote crazing in polymers under stress How to identify environments...
Abstract
This article discusses the molecular mechanism, environmental criteria, and material optimization of environmental stress crazing (ESC) in glassy thermoplastics, polyethylenes, and nylons. In addition, it provides information on various tests used to determine relative susceptibility to ESC, namely constant tensile load testing and constant-strain testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300301
EISBN: 978-1-62708-323-2
... usually have chemical bonds between chains; they have a branched structure. There can be interpenetrating polymer chains when more than one polymer makes up a plastic, or some can have strong bonds throughout the volume of the plastic and form a macromolecule. A fiberglass boat is really a macromolecule...
Abstract
This chapter covers the friction and wear behaviors of plastics and elastomers. It begins by describing the molecular differences between the two types of polymers and their typical uses. It then discusses the important attributes of engineering plastics and their suitability for applications involving friction, erosion, and adhesive and abrasive wear. It also discusses the tribology of elastomers and rubber along with their basic differences and the conditions under which they produce Schallamach waves. It includes information on polymer composites as well.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... Abstract This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780105
EISBN: 978-1-62708-281-5
.... The same trend can be observed for short-chain branching in the polymer architecture, which is discussed in the section “ Chromatography .” Unlike the previously cited techniques, the observed values fingerprint the “total” rheological nature of the polymer and do not simply generate a single, average...
Abstract
This article addresses some established protocols in characterizing thermoplastics, whether they are homogeneous resins, alloyed or blended compositions, or highly modified thermoplastic composites. It begins with a description of various approaches used for the determination of molecular weight (MW) by viscosity measurements. This is followed by a discussion of the use of cone and plate and parallel plate geometries in determining the viscoelastic properties of a polymer melt. Details on some of the chromatographic techniques that allow determination of MW and MW distribution of polymers are then provided. The article concludes with information on three distinctive, but complementary operations of thermoanalytical techniques, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
1