Skip Nav Destination
Close Modal
Search Results for
boron fiber composites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 108 Search Results for
boron fiber composites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2010
Fig. 4.3 Effect of a diamond saw cut on a boron fiber composite. Cracking can be seen to extend over 100 μm into these large brittle fibers. Bright-field illumination, 25× objective
More
Image
Published: 01 November 2010
Fig. 4.5 Polished boron fiber composite cross section. Bright-field illumination, 10× objective
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030067
EISBN: 978-1-62708-349-2
... in the micrograph. Bright-field illumination, 25× objective Fig. 4.3 Effect of a diamond saw cut on a boron fiber composite. Cracking can be seen to extend over 100 μm into these large brittle fibers. Bright-field illumination, 25× objective Fig. 4.4 Schematic showing the mounting of boron...
Abstract
The most common methods for preparing polymeric composites for microscopic analysis can be used for most fiber-reinforced composite materials. There are, however, a few composite materials that require special preparation techniques. This chapter discusses the processes involved in the preparation of titanium honeycomb composites, boron fiber composites, titanium/polymeric composite hybrids, and uncured prepreg materials.
Image
Published: 01 August 1999
Fig. 2 Cross section of a continuous-fiber reinforced boron/aluminum composite. Shown here are 142 μm diameter boron filaments coated with B 4 C in a 6061 aluminum alloy matrix
More
Image
Published: 01 October 2012
Fig. 9.23 Cross section of a continuous fiber-reinforced boron/aluminum composite. Shown here are 142 μm diameter boron filaments coated with B 4 C in a 6061 aluminum alloy matrix. Source: Ref 9.8
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860413
EISBN: 978-1-62708-348-5
... strengths of glass-, boron-, graphite-, and aramid-reinforced epoxy laminates. Vol.% = fiber volume fraction. Refs.: (1) Schramm and Kasen (1977a) ; (2) Dahlerup-Petersen and Perrot (1979) ; (3) Kasen, Schramm, and Beck (1980) . Bisphenol A epoxy: CY 205 (2). Figure 12.15 Comparison between...
Abstract
Composite systems for cryogenic applications are discussed in this chapter. This chapter emphasizes filamentary-reinforced composites because they are the most widely used composite materials. It begins with a discussion on the approach to designing and fabricating with low-pressure laminate composites. This is followed by a section providing an overview of the materials in modern cryogenic technology. Then, the chapter describes the effect of cryogenic temperatures on materials properties; it also introduces the various joining techniques developed for composite materials. The effects of radiation on the properties of the materials are covered as well as the processes involved in testing laminates at cryogenic temperatures. Finally, the chapter provides information available on concrete aggregate composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730115
EISBN: 978-1-62708-283-9
... reinforcements include glass, boron, aramid fiber, and carbon. Properties of some epoxy matrix composite systems are given in Table 10.1 . Properties of some commonly used fibers are given in Table 10.2 . Properties of epoxy matrix composites Table 10.1 Properties of epoxy matrix composites Fiber...
Image
in Introduction—Composite Materials and Optical Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
. Dark-field illumination, 25× objective. (c) Boron fiber polymeric-matrix composite cross section. Bright-field illumination, 50× objective (200× original magnification)
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870179
EISBN: 978-1-62708-299-0
... constitute from 10 to 70 vol% of the composite. Continuous-fiber or filament reinforcements for aluminum include graphite, silicon carbide (SiC), boron, and aluminum oxide (Al 2 O 3 ). Fabrication techniques for these composites vary from vapor deposition coating of the fibers, liquid-metal infiltration...
Abstract
This chapter discusses the ambient-temperature corrosion characteristics of aluminum metal-matrix composites (MMCs), including composites formed with boron, graphite, silicon carbide, aluminum oxide, and mica. It also discusses the effect of stress-corrosion cracking on graphite-aluminum composites and the use of protective coatings and design criteria for corrosion prevention.
Image
Published: 01 August 1999
Fig. 3 Cross section of a graphite/aluminum composite in 6061 alloy matrix. The fibers were precoated with titanium and boron. Fiber bundles were impregnated by liquid-metal infiltration with 6061. The composite was consolidated by diffusion bonding with 6061 foil.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... is a silicon carbide fiber. (b) Nextel 610 is an alumina fiber. Source: Ref 2 Fig. 20.15 Strength retention at elevated temperature for continuous fiber silicon carbide/aluminum (SiC/Al) and silicon carbide/titanium (SiC/Ti). MMC, metal matrix composite. Source: Ref 7 Boron/aluminum...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550457
EISBN: 978-1-62708-307-2
... nonferrous alloy, and the reinforcement consists of high-performance carbon, metallic, or ceramic additions. Reinforcements, either continuous or discontinuous, may constitute from 10 to 70 vol% of the composite. Continuous fiber or filament (f) reinforcements include graphite, silicon carbide (SiC), boron...
Abstract
Metal-matrix composites can operate at higher temperatures than their base metal counterparts and, unlike polymer-matrix composites, are nonflammable, do not outgas in a vacuum, and resist attack by solvents and fuels. They can also be tailored to provide greater strength and stiffness, among other properties, in preferred directions and locations. This chapter discusses the processes and procedures used in the production of fiber-reinforced aluminum and titanium metal-matrix composites. It explains how the length and orientation of reinforcing fibers affect the properties and processing characteristics of both aluminum and titanium composites. It also provides information on fiber-metal laminates and the use of different matrix metals and reinforcing materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240607
EISBN: 978-1-62708-251-8
... additions, as depicted in Fig. 33.1 . Reinforcements, characterized as either continuous or discontinuous, may constitute from 10 to 70 vol% of the composite. Continuous fiber reinforcements include graphite, silicon carbide (SiC), boron, aluminum oxide (Al 2 O 3 ), and refractory metal wires. Continuous...
Abstract
Metal-matrix composites (MMCs) work at higher temperatures than their base metal counterparts and can be engineered for improved strength, stiffness, thermal conductivity, abrasion and/or creep resistance, and dimensional stability. This chapter examines the properties, compositions, and performance-cost tradeoffs of common MMCs, including aluminum-matrix composites, titanium-matrix composites, and fiber-metal laminates. It also explains how fiber-reinforced composites and laminates are made, describing both continuous and discontinuous fiber matrix production processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration...
Abstract
This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration and pyrolysis, chemical vapor infiltration, directed metal oxidation, and liquid silicon infiltration.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
..., 20× objective. (b) Kevlar (E.I. du Pont de Nemours and Company) fabric composite cross section. Dark-field illumination, 25× objective. (c) Boron fiber polymeric-matrix composite cross section. Bright-field illumination, 50× objective (200× original magnification) Fig. 1.3 Unidirectional...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... of relatively uniform thickness, composition, and structure, even with preforms of complex fiber architecture. Carbon and boron nitride (BN) are typical coatings, used either alone or in combination with each other. Frequently, in addition to the interfacial coatings, an overcoating is also applied...
Abstract
Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load-carrying behaviors. It compares the stress-strain curves for monolithic ceramics and ceramic-matrix composites, noting improvements afforded by the addition of reinforcements. It then goes on to discuss the key attributes, properties, and applications of discontinuously reinforced ceramic composites, continuous fiber ceramic composites, and carbon-carbon composites. It also describes a number of ceramic-matrix composite processing methods, including cold pressing and sintering, hot pressing, reaction bonding, directed metal oxidation, and liquid, vapor, and polymer infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
..., and numerous test data for this material are available in the literature. In this chapter, therefore, discussion is limited to those PMCs known as filamentary composites, which are made up of long continuous fibers (generally graphite or boron) embedded in a matrix of epoxy or thermoplastic. The stress...
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870031
EISBN: 978-1-62708-314-0
... of fibers are used for polymeric composites, with glass, aramid (for example, Kevlar), and carbon being the most common. Boron fiber was the original high-performance fiber before carbon was developed. It is a large-diameter fiber made by pulling a fine tungsten wire through a long, slender reactor, where...
Abstract
This chapter discusses the properties and processing characteristics of glass, aramid, carbon, and ultra-high molecular weight polyethylene fibers and related product forms, including woven fabrics, prepreg, and reinforced mats. It also includes a review of fiber terminology as well as physical and mechanical property data for commercially important high-strength fibers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870489
EISBN: 978-1-62708-314-0
... are normally surface-treated to improve their adhesion to the polymeric matrix. Several other fibers are occasionally used for polymeric composites. Boron fiber was the original high-performance fiber before carbon was developed. It is a large-diameter fiber that is made by pulling a fine tungsten wire...
1