Skip Nav Destination
Close Modal
Search Results for
boriding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 107 Search Results for
boriding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Cast Aluminum-Silicon Alloy—Phase Constituents and Microstructure
> Aluminum-Silicon Casting Alloys: Atlas of Microstructures
Published: 01 December 2016
Fig. 1.15 Geometry at αAl-substrate interface. (a) TiB 2 boride; (b) AlB 2 boride; (c) TiC carbide; (d) Al 3 Ti aluminide. Source: Ref 28
More
Image
Published: 01 November 2010
Fig. D.11 The lamellar constituent is a boride (M3B2) formed by incipient fusion. The two large crystals are metal carbide. Optical microscope, original magnification 1500×. Condition: As fabricated (as forged) Source: Ref 1 , 2
More
Image
Published: 01 September 2022
Fig. 9 Cross section of borided AISI 1040 steel; (a) micrograph at 900 °C (1650 °F) for 6 h; (b) an elemental depth profile indicating phases present from surface to core. B, boron; FeB, iron boride. Source: Ref 9
More
Image
in Tribological Properties of Stainless Steel and Other Corrosion-Resisting Metals
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 9.18 Hard phases in a nickel-base hardfacing alloy (54 HRC) magnified 400×. A, chromium borides; B, Ni eutectic; C, nickel borides
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000025
EISBN: 978-1-62708-313-3
... phase and geometrically and topologically close-packed phases, and describes how superalloy microstructure can be modified via heat treatments and directional solidification. It also discusses the role of carbides, borides, oxides, and nitrides and the detrimental effects of sulfocarbides...
Abstract
The microstructure of superalloys is highly complex, with a large number of dispersed intermetallics and other phases that modify alloy behavior through their composition, morphology, and distribution. This chapter provides an overview of the most notable phases, including the matrix phase and geometrically and topologically close-packed phases, and describes how superalloy microstructure can be modified via heat treatments and directional solidification. It also discusses the role of carbides, borides, oxides, and nitrides and the detrimental effects of sulfocarbides.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230117
EISBN: 978-1-62708-298-3
... Abstract This chapter discusses the synthesis of important beryllium compounds, including beryllium borides, beryllium carbide, beryllium carbonates, beryllium carboxylates, beryllium halides, beryllium hydride, beryllium hydroxide, beryllium nitrate, beryllium nitride, beryllium oxalate...
Abstract
This chapter discusses the synthesis of important beryllium compounds, including beryllium borides, beryllium carbide, beryllium carbonates, beryllium carboxylates, beryllium halides, beryllium hydride, beryllium hydroxide, beryllium nitrate, beryllium nitride, beryllium oxalate, beryllium oxide, beryllium oxide carboxylates, beryllium perchlorate, beryllium phosphates, beryllium sulfate, and beryllium sulfide.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
..., and boride coatings that improve the performance of hot-work and high-speed tool steels. boride coatings chemical vapor deposition electron beam surface modification high-speed tool steel hot-work tool steel ion implantation laser beam surface modification nitriding oxide coatings physical...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050001
EISBN: 978-1-62708-432-1
.... It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing...
Abstract
A working knowledge of diffusion is necessary to understand and predict the behavior of metals and alloys during manufacturing and in certain types of service. This chapter covers the fundamentals of diffusion in solids and some of the applications in which diffusion plays a role. It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing, siliconizing, chromizing, vanadizing, and titanizing. It also discusses diffusion bonding and presents several approaches for dealing with oxide barrier problems.
Image
Published: 01 July 2009
Fig. 22.22 Effect of sputtering pressure on residual stresses in beryllium and beryllium boride (BeB) sputter-deposited films. RF, radio frequency; DC, direct current. Source: Hseieh 1988
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280025
EISBN: 978-1-62708-267-9
... in most cobalt-base alloys. Some carbide- and γ′-forming elements may contribute significantly to chemical properties as well. Borides may form in the iron-nickel-and nickel-base superalloys. Detrimental phases also form in the superalloys. Among these phases are σ, μ, and Laves. These phases are so...
Abstract
This chapter describes the metallurgy of superalloys and the extent to which it can be controlled. It discusses the alloying elements, crystal structures, and processing sequences associated with more than a dozen phases that largely determine the characteristics of superalloys, including their properties, behaviors, and microstructure. It examines the role of more than 20 alloying elements, including phosphorus (promotes carbide precipitation), boron (improves creep properties), lanthanum (increases hot corrosion resistance), and carbon and tungsten which serve as matrix stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350183
EISBN: 978-1-62708-315-7
... Fig. 14 Compares the abrasion resistance of TiN coatings applied by various thin-film processes Fig. 15 Compares the surface hardness of hardened tool steel and a cemented carbide with that of the following surface-hardening processes: TRD, CVD, PVD, boriding, chrome plating, electroless...
Abstract
This chapter compares and contrasts surface-engineering processes based on process availability, corrosion and wear performance, distortion effects, penetration depth or attainable coating thickness, and cost. It provides both quantitative and qualitative information as well as measured property values.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350095
EISBN: 978-1-62708-315-7
Abstract
This chapter provides practical information on surface treatments that work by altering the surface chemistry of metals and alloys. It discusses the use of phosphate and chromate conversion coatings as well as anodizing, steam oxidation, diffusion coatings, and pack cementation. The chapter also covers ion implantation and laser alloying.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000111
EISBN: 978-1-62708-313-3
... along certain crystallographic directions. If machining of the alloy is necessary, alloys with high carbon contents complicate the process, because carbides may form regardless of heat treatment and will reduce machinability. High boron and borides should be avoided for the same reason. The work...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280357
EISBN: 978-1-62708-267-9
... electron vacancy number of particular element n = number of elements in the matrix There was clearly a need in this type of calculation system to incorporate the effects of carbides, borides, and γ′ formation on the γ matrix composition from which the tcp is presumed to form. A plethora...
Abstract
This appendix provides additional information on superalloy microstructures. It includes several micrographs showing metallographic features mentioned in the text but not illustrated elsewhere in the book. It also discusses carbide reactions that occur during heat treating and demonstrates the use of electron vacancy calculations to estimate the resistance of superalloys to the formation of topologically close-packed phases.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000139
EISBN: 978-1-62708-313-3
... Fig. D.11 The lamellar constituent is a boride (M3B2) formed by incipient fusion. The two large crystals are metal carbide. Optical microscope, original magnification 1500×. Condition: As fabricated (as forged) Source: Ref 1 , 2 Fig. D.12 Needles of sigma phase are longer and better...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.9781627084321
EISBN: 978-1-62708-432-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420289
EISBN: 978-1-62708-310-2
...-boride particles was desired. After consulting the B-Cr-Ni phase diagram, a series of samples having acceptable amounts of total chromium borides and chromium matrix were made and tested. Subsequent fine tuning of the composition to ensure fabricability of welding rods, weldability, and the desired...
Abstract
This chapter discusses the use of phase diagrams in alloy design, processing, and performance assessment. The examples cover both ferrous and nonferrous metals and a variety of goals and objectives. The chapter also identifies limitations and pitfalls associated with the use of phase diagrams.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850543
EISBN: 978-1-62708-260-0
... carbides Silicon carbide Borides of Hf, Nb, Ti, V, or Zr Tungsten boride Attack-polishing solution Slurry of chromic oxide abra- sive in water plus a few drops of Vi% aq. HF 10 g rouge abrasive 35 mL water 5 mL of 20% CrO, in water 2% CrO, in water Gamma alumina 5% CrO, in water 7-10% CrO, in water plus H...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740325
EISBN: 978-1-62708-308-9
Abstract
This chapter covers a wide range of finishing and coating operations, including cleaning, honing, polishing and buffing, and lapping. It discusses the use of rust-preventative compounds, conversion coatings, and plating metals as well as weld overlay, thermal spray, and ceramic coatings and various pack cementation and deposition processes. It also discusses the selection and use of industrial paints and paint application methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170290
EISBN: 978-1-62708-297-6
... … … B, C, Zr, Hf Facilitates working … Ni 3 Ti … Retard γ′ coarsening … … Re (a) Not all these effects necessarily occur in a given alloy. (b) Hardening by precipitation of Ni 3 Ti also occurs if sufficient Ni is present. (c) If present in large amounts, borides are formed...
Abstract
This article discusses the composition, structure, and properties of iron-nickel-, nickel-, and cobalt-base superalloys and the effect of major alloying and trace elements. It describes the primary and secondary roles of each alloying element, the amounts typically used, and the corresponding effect on properties and microstructure. It also covers mechanical alloying and weldability and includes nominal composition data on many wrought and cast superalloys.
1