Skip Nav Destination
Close Modal
Search Results for
bonding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 860 Search Results for
bonding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290243
EISBN: 978-1-62708-306-5
... Abstract Adhesive bonding is a widely used industrial joining process in which a polymeric material is used to join two separate pieces (the adherends or substrates). This chapter begins with a discussion on the advantages and disadvantages of adhesive bonding, followed by a section providing...
Abstract
Adhesive bonding is a widely used industrial joining process in which a polymeric material is used to join two separate pieces (the adherends or substrates). This chapter begins with a discussion on the advantages and disadvantages of adhesive bonding, followed by a section providing information on the theory of adhesion. The chapter then describes the considerations for designing adhesively bonded joints and for testing or characterizing adhesive materials. The following section covers the characteristics of the most important synthetic adhesive systems and five groups of adhesives, namely structural, hot melt, pressure sensitive, water based, and ultraviolet and electron beam cured. The chapter ends with a discussion on some general guidelines for adhesive bonding and the basic steps in the adhesive bonding process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870235
EISBN: 978-1-62708-314-0
... Abstract This chapter explains how polymeric adhesives are applied to composite as well as metal parts, forming bonded structures. It describes surface preparation practices and techniques, epoxy selection and use, and bonding procedures. adhesive bonding epoxy adhesives surface...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230441
EISBN: 978-1-62708-298-3
... Abstract This chapter explains how to join beryllium parts using adhesive bonding and mechanical fastening techniques and discusses the advantages and disadvantages of each method. It describes the stresses that need to be considered when designing adhesive bonds, the benefits and limitations...
Abstract
This chapter explains how to join beryllium parts using adhesive bonding and mechanical fastening techniques and discusses the advantages and disadvantages of each method. It describes the stresses that need to be considered when designing adhesive bonds, the benefits and limitations of different adhesives, and surface preparation requirements. It explains how adhesives are applied and cured and how curing times and temperatures affect bonding strength. It also discusses the use of bolts and rivets and the different types of joints that can be made with them.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290137
EISBN: 978-1-62708-306-5
... associated with diffusion bonding and welding processes. These processes use either deformation or diffusion and limited deformation to produce high-quality joints between both similar and/or dissimilar materials. Specific solid-state welding processes include: Diffusion welding, also commonly referred...
Abstract
Solid-state welding processes are those that produce coalescence of the faying surfaces at temperatures below the melting point of the base metals being joined without the addition of brazing or solder filler metal. This chapter discusses solid-state welding processes such as diffusion welding, forge welding, roll welding, coextrusion welding, cold welding, friction welding, friction stir welding, explosion welding, and ultrasonic welding.
Image
Published: 01 November 2011
Fig. 6.1 Sequence of metallurgical stages in the diffusion bonding process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain-boundary diffusion of atoms to the voids
More
Image
Published: 01 November 2011
Fig. 6.3 Typical diffusion bonding equipment. Source: Ref 6.1
More
Image
Published: 01 November 2011
Fig. 6.4 Schematic of four-sheet superplastic forming/diffusion bonding (SPF/DB) process
More
Image
Published: 01 November 2011
Fig. 6.11 Bond shear strength versus surface exposure/reduction in cold roll bonding. Source: Ref 6.8
More
Image
Published: 01 November 2011
Fig. 10.16 Amorphous or dual-resin bonding. PEEK, polyetheretherketone; PEI, polyetherimide. Source: Ref 10.5
More
Image
in Sintering and Corrosion Resistance
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 5.21 Well-sintered 316L (etched) revealing interparticle bonding, twin boundaries, rounded pores, and precipitate-free grain boundaries
More
Image
in Sintering and Corrosion Resistance
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Fig. 5.22 Well-sintered 434L (etched) revealing interparticle bonding, rounded pores, and precipitate-free grain boundaries
More
Image
Published: 01 April 2004
Fig. 1.32 Temperature/pressure curve for diffusion bonding of gold, for a process time of 1 h. The line on the graph differentiates between joints of acceptable (above) and unsatisfactory (below) tensile joint strength after fabrication.
More
Image
Published: 01 April 2004
Fig. 1.33 Temperature/pressure curve for diffusion bonding of indium, for a process time of 1 h. Good-quality joints are obtained from the conditions above the boundary line and lesser-quality or no joint from those below.
More
Image
Published: 01 April 2004
Fig. 5.12 An array of exceptionally small flip-chip solder bumps ready for bonding. Each is mounted on a pedestal of polyamide for functional reasons. Solder bumps of this dimension can only be realized using semiconductor processing techniques. 5000×. Courtesy of BAE Systems
More
Image
Published: 01 December 2008
Fig. 3.18 I-S bonding in a solid solution of γFe-interstitial (I)-substitutional (S). (a) Classification of interstitial sites. (b) Numerical distribution. (c) Trap ratio related to temperature. f 1 S = n S / n .
More
Image
Published: 01 June 2016
Fig. 3.9 Concurrent simulation of bonding and rebounding using an adiabatic quasi-two-dimensional model in ABAQUS/Explicit using the Eulerian algorithm. The oxide layer is described by a pressure-dependent yield model, allowing dilation at negligible tensile strength. For this example
More
1