Skip Nav Destination
Close Modal
Search Results for
biomedical applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 37 Search Results for
biomedical applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120039
EISBN: 978-1-62708-269-3
... Abstract Titanium castings are used in a wide range of aerospace, chemical process, marine, biomedical, and automotive applications. This chapter provides an overview of titanium casting and associated processes and how they compare with other manufacturing methods. It also discusses the role...
Abstract
Titanium castings are used in a wide range of aerospace, chemical process, marine, biomedical, and automotive applications. This chapter provides an overview of titanium casting and associated processes and how they compare with other manufacturing methods. It also discusses the role heat treating and its effect on the tensile properties of different titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120131
EISBN: 978-1-62708-269-3
.... Commercial applications of titanium, in most cases, have tracked military developments. The requirements of the steam turbine, chemical, automotive, biomedical, and sports industries (as well as others) have been secondary causes contributing to the enrichment of the technological base of titanium...
Abstract
This chapter discusses some of the promising developments in the use of titanium, including titanium aluminides, titanium matrix composites, superplastic forming, spray forming, nanotechnology, and rapid solidification rate processing. It also reports on efforts to increase the operating temperature range of conventional titanium alloys and reduce costs.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040001
EISBN: 978-1-62708-428-4
..., electronic and semiconductor, biomedical, landing gears (replacement of hard chrome with thermal spray), primary metals/steel, paper, printing, nuclear, petrochemical, and textile. Addendum 2 also summarizes many of the applications highlighted in this handbook. A few applications critical to thermal spray...
Abstract
This article provides a high-level overview of thermal spray technologies and their applications and benefits. It is intended to educate members of government, industry, and academia to the benefits of thermal spray technology. The article describes the value of thermal spray technology with examples of application success stories. A few applications critical to thermal spray and market growth are briefly discussed. The article also summarizes the key research areas in thermal spray technology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280117
EISBN: 978-1-62708-267-9
..., P/M techniques have not found much success in the production of standard γ′-hardened nickel-base superalloys for applications such as sheet or turbine airfoils. Oxide dispersion strengthening has some viability for such applications. Conventional P/M superalloys have found use in biomedical...
Abstract
Gas turbine disks made from nickel-base superalloys are often produced using powder metallurgy (P/M) techniques because the alloy compositions normally used are difficult or impractical to forge by conventional methods. This chapter discusses the P/M process and its application to superalloys. It describes the gas, vacuum, and centrifugal atomization processes used to make commercial superalloy powders. It explains how the powders are consolidated into preforms or billets using hot isostatic pressing, extrusion, or a combination of the two. It also provides information on spray forming and consolidation by atmospheric pressure, and includes a section on powder-based disk components, where it discusses the general advantages of P/M as well as the effects of inclusions, carbon contamination, and the formation of oxide and carbide films due to prior particle boundary conditions. The chapter concludes with a detailed discussion on mechanically alloyed superalloy compositions, the product forms into which they are made, and some of the applications where they are used.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460185
EISBN: 978-1-62708-285-3
... to manufacture HAP/titanium coatings with good corrosion and mechanical properties for biomedical applications ( Ref 7.39 ). Cold spraying of WC-CoCr ( Ref 7.25 , 7.40 , 7.41 ) has been investigated for wear as well as corrosion protection. The higher density of deposits and lack of in-flight reactions...
Abstract
Cold spray coatings technology has the potential to provide surface enhancement for applications in sectors such as defense and aerospace, oil and gas, power generation, medical, automotive, electronics, and railways. The ability to deposit clean metallic coatings is used in applications requiring corrosion/oxidation protection, erosion/wear protection, additive manufacturing, and fabricating free forms. This chapter discusses the function, advantages, and benefits of some of these applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040010
EISBN: 978-1-62708-428-4
... Abstract This article provides a brief description of commercially important thermal spray processes and gives examples of applications and application requirements. The processes covered are flame, wire arc, plasma, high-velocity oxyfuel processes, detonation gun, and cold spray methods...
Abstract
This article provides a brief description of commercially important thermal spray processes and gives examples of applications and application requirements. The processes covered are flame, wire arc, plasma, high-velocity oxyfuel processes, detonation gun, and cold spray methods. Examples are provided of the applications in aerospace, automotive, and medical device industries as well as the use of thermal spray as an additive manufacturing technique.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040237
EISBN: 978-1-62708-300-3
... are the stages of forming). Courtesy of DEFORM 18.4.4 Microforming of Surgical Blades The trend in miniaturization allows the production of cold forged parts with dimensions less than 0.04 in. (1 mm) range for electronics and biomedical applications. These parts are currently produced by 3-D etching...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120005
EISBN: 978-1-62708-269-3
... applications such as biomedical implants, bicycle frames, and so on, typically use higher-strength titanium alloys. However, this use is in a very selective manner that depends on factors such as thermal environment, loading parameters, corrosion environment, available product forms, fabrication...
Abstract
Titanium is a lightweight metal with a density approximately 60% that of steel and, through alloying and deformation processing, it can be just as strong. It is readily available in many grades and forms and can be further processed using standard methods and techniques. This chapter provides a concise review of the capabilities of titanium and its design advantages over other materials. It includes information on properties and selection factors as well as applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030001
EISBN: 978-1-62708-418-5
... to place an HEA coating with specific properties on the surface of the substrate to improve the performance of the substrate ( Ref 106 ). Due to their good mechanical properties and biocompatible compositions, HEAs can be attractive materials for biomedical applications. For example, the computational...
Abstract
This chapter summarizes the progress that has been made in the study of high-entropy alloy (HEA) systems and the process-structure-property relationships that define them. It describes the various ways HEAs can be strengthened and explains how alloying elements influence tensile and yield strength, fracture toughness, and fracture strength. It discusses the stages of plastic deformation in HEAs and the role of dislocations and twinning in the evolution of microstructure. It reviews some of the work that has been done on fatigue behaviors and the methods developed to assess fatigue performance. It discusses the influence of defects on fatigue life, the effect of temperature and grain size on fatigue-crack propagation, and the role of nanotwinning in crack-growth retardation. It describes the methods used to produce HEAs in bulk and powder form and to apply them as protective coatings and films. It also identifies potential applications based on properties such as strength, hardness, density, wear resistance, high-temperature stability, and biocompatibility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
... nonferrous metals fit within multiple categories, reflecting the variety of property combinations possible in nonferrous metals. There also are numerous special-purpose alloys and applications beyond these general application categories. This includes alloys for biomedical applications and special...
Abstract
Nonferrous metals are of commercial interest both as engineering materials and as alloying agents. This chapter addresses both roles, discussing the properties, processing characteristics, and applications of several categories of nonferrous metals, including light metals, corrosion-resistance alloys, superalloys, refractory metals, low-melting-point metals, reactive metals, precious metals, rare earth metals, and metalloids or semimetals. It also provides a brief summary on special-purpose materials, including uranium, vanadium, magnetic alloys, and thermocouple materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000001
EISBN: 978-1-62708-313-3
... high mechanical strength and surface stability at high temperature ( Ref 1 ). The primary application that has driven superalloy development is for use as air foils in the hot section of gas turbine engines (GTEs), but they have been used successfully in other applications, such as rocket...
Abstract
Superalloys, although not strictly defined, are generally regarded as high-performance alloys based on group VIII elements (nickel, cobalt, or iron, with a high percentage of nickel) to which a multiplicity of alloying elements have been added. The defining feature of a superalloy is its combination of relatively high mechanical strength and surface stability at high operating temperatures. This chapter provides a brief history of the development of superalloys and discusses their use in the gas turbine engines.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
... savings over currently used metals. Applications include heat exchangers, automotive engine components such as turbocharger rotors and roller cam followers, power generation components, cutting tools, biomedical implants, and processing equipment used for fabricating a variety of polymer, metal...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
... temperature. The excellent corrosion resistance of titanium allows applications in chemical processing equipment, marine components, and biomedical implants such as hip prostheses. Titanium is an important aerospace material, finding applications as airframe and jet engine components. When it is combined...
Abstract
Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites. This chapter provides a brief overview of these lightweight materials, discussing their primary advantages along with their properties, behaviors, and limitations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040319
EISBN: 978-1-62708-300-3
... processes such as microforming and orbital forging are being further developed for practical and economical applications. 23.5.1 Microforming The trend in miniaturization allows the production of cold-forged parts with dimensions less than 0.04 in. (1 mm) range for electronics and biomedical...
Abstract
This chapter defines near-net shape forging as the process of forging parts close to their final dimensions such that little machining or only grinding is required as a final step. It then describes the causes of dimensional variations in forging, including die deflection, press deflection, and process inconsistencies, and discusses related innovations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280001
EISBN: 978-1-62708-267-9
... certain superalloys standard materials for biomedical devices. Superalloys also find use in cryogenic applications. Some Applications of Superalloys Table 1.3 Some Applications of Superalloys Aircraft/industrial gas turbine components: Disks Bolts Shafts Cases...
Abstract
This chapter provides a brief introduction to superalloys and their high-temperature capabilities. It explains how and why they were developed and highlights some of their unique properties, behaviors, and characteristics. It discusses their basic metallurgy, how they are processed, and where they are typically used. It also includes nominal composition data for more than 120 superalloys and a concise overview of the major topics in the book.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780075
EISBN: 978-1-62708-268-6
... required. In some cases, ordering or using incorrect products for the intended application can cause failures. If such a situation exists, the failure analysis team can discover it by reviewing all relevant purchase orders. To the extent that it is possible to do so, the failure analysis team should...
Abstract
A product pedigree describes its design and how it was built and shows that it was built in accordance with the drawings and other documentation defining the product configuration. Evaluating the pedigree of a failed product can help to rule in or rule out hypothesized failure causes. This chapter describes various areas that can be examined by the failure analysis team to assess the pedigree of the failed system. If the failure analysis team suspects product pedigree anomalies it should confirm conformance through independent means.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110513
EISBN: 978-1-62708-247-1
... by a small capacitor. As it can be seen from list above, “automotive” stress factors show quite different from other high reliability-applications as in aviation or biomedical appliances. Since this reflects itself directly in qualification procedures, an automotive electronics council (AEC...
Abstract
Root cause of failure in automotive electronics cannot be explained by the failure signatures of failed devices. Deeper investigations in these cases reveals that a superimposition of impact factors, which can never be represented by usual qualification testing, caused the failure. This article highlights some of the most frequent early life failure types in automotive applications. It describes some of the critical things to be considered while handling packages and printed circuit board layout. The article also provides information on failure anamnesis that shows how to use history, failure signatures, environmental conditions, regional failure occurrences, user profile issues, and more in the failure analysis process to improve root cause findings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.9781627084284
EISBN: 978-1-62708-428-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120047
EISBN: 978-1-62708-269-3
... high-performance application areas, such as aerospace and sporting goods (e.g., golf club heads and racing bicycles) applications, biomedical implants, and other industrial and marine corrosion service, will pay for the higher price of titanium alloy components. However, the initial cost of titanium...
Abstract
This chapter discusses the advantages and disadvantages of producing titanium parts using powder metallurgy (PM) techniques. It compares the typical properties of wrought, cast, and PM titanium alloy products, addresses various manufacturing challenges, and describes several consolidation and shaping processes along with associated property data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060333
EISBN: 978-1-62708-261-7
..., and/or strength at elevated temperatures. Biomedical application is another important use. The initial biomedical applications of cobalt-base alloys were in the dental field, and early evaluations of these alloys showed excellent wear resistance, corrosion resistance, bio-compatibility, and mechanical properties...
Abstract
Nonferrous alloys are heat treated for a variety of reasons. Heat treating can reduce internal stresses, redistribute alloying elements, promote grain formation and growth, produce new phases, and alter surface chemistry. This chapter describes heat treatment processes and how nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics.
1