Skip Nav Destination
Close Modal
Search Results for
binary iron phase diagrams
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 172 Search Results for
binary iron phase diagrams
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 March 2012
Fig. 14.2 Two binary iron phase diagrams, showing ferrite stabilization (iron-chromium) and austenite stabilization (iron-nickel). Source: Ref 14.1 as published in Ref 14.2
More
Image
Published: 01 March 2012
Fig. 10.37 Two representative binary iron phase diagrams, showing ferrite stabilization (iron-chromium) and austenite stabilization (iron-nickel). Source: Ref 10.4 as published in Ref 10.5
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420191
EISBN: 978-1-62708-310-2
..., and explains how to construct tie lines to analyze intermediate compositions and phases. It also discusses the use of three-dimensional temperature-composition diagrams, three- and four-phase equilibrium phase diagrams, and binary and ternary phase diagrams associated with the iron-chromium-nickel alloy system...
Abstract
This chapter discusses the construction, interpretation, and use of ternary phase diagrams. It begins by examining a hypothetical phase space diagram and several corresponding two-dimensional plots. It then describes one of the most basic tools of metallurgy, the Gibbs triangle, and explains how to construct tie lines to analyze intermediate compositions and phases. It also discusses the use of three-dimensional temperature-composition diagrams, three- and four-phase equilibrium phase diagrams, and binary and ternary phase diagrams associated with the iron-chromium-nickel alloy system.
Image
Published: 01 October 2011
Fig. 9.23 The iron-carbon binary phase diagram showing region of temperatures for full annealing and various other heat treatments applied to steels. Source: Ref 9.7
More
Image
Published: 31 December 2020
Fig. 1 Iron-carbon binary phase diagram with areas of steel annealing temperatures above, below, and in the range of the lower critical temperature ( A 1 ). Actual annealing involves rates of heating and cooling, and critical temperatures during heating ( Ac 1 ) and cooling Sources: Adapted
More
Image
in Metallurgy and Alloy Compositions
> Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties
Published: 01 June 2007
Image
Published: 01 July 2009
Image
Published: 01 December 2008
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420289
EISBN: 978-1-62708-310-2
... (austenite), and aluminum may substitute for chromium because it stabilizes the α-iron phase (ferrite), leaving only a small γ loop (see Fig. 14.2 and 14.3 ). Fig. 14.2 Two binary iron phase diagrams, showing ferrite stabilization (iron-chromium) and austenite stabilization (iron-nickel). Source...
Abstract
This chapter discusses the use of phase diagrams in alloy design, processing, and performance assessment. The examples cover both ferrous and nonferrous metals and a variety of goals and objectives. The chapter also identifies limitations and pitfalls associated with the use of phase diagrams.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230179
EISBN: 978-1-62708-298-3
.... 15.8 Binary phase diagram of beryllium-copper. Source: Chakrabarti et al. 1987 15.9 Beryllium-Iron (Be-Fe) Figure 15.9 . Iron is one of the principal impurities found in commercial beryllium materials and has a maximum solubility of 0.9 at.% or 5.3 wt% in hexagonal beryllium at 1205 °C...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420001
EISBN: 978-1-62708-310-2
... Diagrams of Binary Nickel Alloys , ASM International , 1991 • Okamoto H. and Massalski T.B. , Ed., Phase Diagrams of Binary Gold Alloys , ASM International , 1987 • Okamoto H. , Ed., Phase Diagrams of Binary Iron Alloys , ASM International , 1993 • Okamoto H...
Abstract
This chapter provides a brief overview of phase diagrams, explaining what they represent and how and why they are used. It identifies key points, lines, and features on a binary nickel-copper phase diagram and explains what they mean from a practical perspective. It also discusses the concept of equilibrium, the significance of Gibb’s phase rule, the theorem of Le Chatelier, and the use of the lever rule.
Image
Published: 01 August 2018
(5.4% C) (hypereutectic white cast irons may solidify without forming pro-eutectic cementite). Even though alloying elements alter the diagram and the composition of phases in equilibrium, using the binary phase diagram is helpful in a first attempt at understanding the microstructures
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240075
EISBN: 978-1-62708-251-8
... based on eutectic compositions for various reasons, including the minimization of both energy input and coring, or alloy segregation. For example, the iron-carbon system has a eutectic at composition of 4.3 wt% C, which is the basis of cast irons. Many other binary systems have phase diagrams...
Abstract
Phase diagrams are graphical representations that show the phases present in the material at various compositions, temperatures, and pressures. This chapter begins with a section describing the construction of phase diagrams for the simple binary isomorphous system. A binary phase diagram can be used to determine three important types of information: the phases that are present, the composition of the phases, and the percentages or fractions of the phases. The chapter then describes the construction of one common type of binary phase diagram i.e., the eutectic alloy system. The major eutectic systems include the aluminum-silicon eutectic system and the lead-tin eutectic system. The chapter discusses the construction of eutectic phase diagrams from free energy curves. It also provides information on peritectic, monotectic, and solid-state reactions in alloy systems. The presence of intermediate phases is also described. Finally, a brief section provides some information on ternary phase diagrams.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400023
EISBN: 978-1-62708-258-7
... 0.77% are called hypoeutectoid steels, and above 0.77% C, hypereutectoid steels (the prefix hypo means under, and the prefix hyper means over). It must be kept in mind that the iron-carbon phase diagram in Fig. 2.3 represents only iron-carbon binary alloys and does not apply to iron-carbon...
Abstract
This chapter introduces the basic ferrous physical metallurgy principles that need to be understood by the metallographer. The discussion focuses on the variations in microstructures that are generated as a result of the phase transformations that occur during both heat treatment (as in steels) and solidification (as in cast irons). The chapter describes how the development of the iron-carbon phase diagram, coupled with the understanding of the kinetics of phase transformations through the use of isothermal transformation diagram, were breakthroughs in the advancement of ferrous physical metallurgy. Several examples of the morphological features of microstructural constituents in steels are also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480031
EISBN: 978-1-62708-318-8
... morphology. It then discusses the concept of solid solutions, the difference between substitutional and interstitial solid solubility, the effect of alloying elements, and the development of intermetallic phases. The chapter also covers the construction and use of binary and ternary phase diagrams...
Abstract
This chapter describes the structures, phases, and phase transformations observed in metals and alloys as they solidify and cool to lower temperatures. It begins with a review of the solidification process, covering nucleation, grain growth, and the factors that influence grain morphology. It then discusses the concept of solid solutions, the difference between substitutional and interstitial solid solubility, the effect of alloying elements, and the development of intermetallic phases. The chapter also covers the construction and use of binary and ternary phase diagrams and describes the helpful information they contain.
Image
Published: 01 November 2007
Fig. 6.4 Dashed lines are estimates of new positions of the A 1 , A 3 , and A cm lines in 52100 steel, a hypereutectic chromium steel. Solid lines represent A 1 , A 3 , and A cm in the binary iron-carbon phase diagram.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140055
EISBN: 978-1-62708-264-8
... diagram is now called a ternary phase diagram. The study of ternary phase diagrams is considerably more complex than binary phase diagrams. The iron-carbon diagram of Fig. 3.5 involves only two elements and is called a binary phase diagram. Details are not presented here on ternary phase diagrams...
Abstract
Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain. It explains why manganese is sometimes added to steel and how unintended consequences, such as the development of sulfide stringers, can offset the benefits. It also examines the effect of alloying elements on the iron-carbon phase diagram, particularly their effect on transformation temperatures.
Image
Published: 01 August 2018
Fig. 17.43 Liquidus surface projection in the iron rich corner of the Fe-C-P phase diagram. The binary eutectic α-Fe 3 P (steadite) is indicated as E b . The ternary eutectic is indicated as E 1 . Source: Ref 32
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420239
EISBN: 978-1-62708-310-2
... interaction in a multiphase binary system will invariably result in a diffusion zone with single-phase product layers separated by parallel interfaces in a sequence dictated by the corresponding phase diagram. The reason for the development of only straight interfaces with fixed composition gaps follows...
Abstract
This chapter discusses some of the methods and measurements used to construct phase diagrams. It explains how cooling curves were widely used to determine phase boundaries, and how equilibrated alloys examined under controlled heating and cooling provide information for constructing isothermal and vertical sections as well as liquid projections. It also explains how diffusion couples provide a window into local equilibria and identifies typical phase diagram construction errors along with problems stemming from phase-boundary curvatures and congruent transformations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310281
EISBN: 978-1-62708-286-0
...-Calc ( Ref 1 ) is a powerful, flexible software package available from Thermo-Calc Software AB for performing various kinds of thermodynamic and phase diagram calculations for multicomponent systems. The software is based on the so-called CALPHAD (CALculation of PHAse Diagrams) method ( Ref 2...
1