1-20 of 176 Search Results for

beryllium-copper alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 October 2011
Fig. 14.7 Phase diagrams for beryllium-copper alloys. (a) Binary composition for high-strength alloys such as C17200. (b) Pseudobinary composition for C17510, a high-conductivity alloy containing Cu-1.8Ni-0.4Be More
Image
Published: 01 June 2008
Fig. 25.16 Precipitation hardening of high-strength beryllium-copper alloys More
Image
Published: 01 December 1984
Figure 3-34 Microstructure of beryllium-copper alloy revealed by swabbing with aqueous 3% ammonium persulfate and 1% ammonium hydroxide. Left, solution-annealed, twins not attacked [70 HRB (Rockwell hardness on the B scale), 300×]; right, solution-annealed and aged [41 HRC (Rockwell hardness More
Image
Published: 01 June 2008
Fig. 25.17 Microstructure of beryllium-copper alloy. Original magnification: 300×. Source: Ref 4 More
Image
Published: 01 March 2006
Fig. 6 Precipitation-hardening curves of beryllium-copper binary alloys. As the percentage of beryllium increases, the aging time required to reach maximum hardness is shortened, and the maximum hardness is increased. These alloys were quenched form 800 °C (1470 °F) and aged at 350 °C (660 °F More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240135
EISBN: 978-1-62708-251-8
... Abstract Precipitation hardening is used extensively to strengthen aluminum alloys, magnesium alloys, nickel-base superalloys, beryllium-copper alloys, and precipitation-hardening stainless steels. This chapter discusses two types of particle strengthening: precipitation hardening, which takes...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230493
EISBN: 978-1-62708-298-3
... ranges. beryllium copper waste recycling 27.1 Introduction Salient beryllium statistics are based mostly on the beryllium content of beryllium-copper alloys and beryllium metal ( Table 27.1 ). In 2000, approximately 130 metric tons of beryllium contained in postconsumer old scrap...
Image
Published: 01 July 2009
Fig. 13.8 Critical resolved shear stress (CRSS) for basal slip ( T o ) in beryllium and beryllium-copper alloys in terms of temperature. Source: Avotin et al. 1974 , 1975 More
Image
Published: 01 July 2009
Fig. 13.9 Macro elastic limit (critical resolved shear stress, or CRSS) for prismatic slip of beryllium and dilute beryllium-copper alloys as a function of temperature. Source: Avotin et al. 1974 , 1975 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230163
EISBN: 978-1-62708-298-3
... Abstract This chapter discusses the composition, properties, and uses of the most common beryllium alloys and composites. It provides information on beryllium-aluminum, beryllium-copper, and beryllium-titanium as well as beryllium-antimony and beryllium-iron systems. alloying elements...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230055
EISBN: 978-1-62708-298-3
... leaving the subject of carbon reduction of the oxide, the process whereby beryllium-copper alloys are commercially prepared should be discussed. The essence of the process (which is described in Chapter 14, “Alloying of Beryllium,” in this book) is the smelting of BeO, carbon, and copper in an electric...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440231
EISBN: 978-1-62708-262-4
... for hardening or strengthening, namely solution treating and aging. Examples are presented for heat treating of two commercially important nonferrous alloys, one from the aluminum-copper system and one from the copper-beryllium system. aging annealing cold working nonferrous alloys solution treatment...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230007
EISBN: 978-1-62708-298-3
... emerged from the developmental programs with the discovery of the exceptional mechanical properties of metals alloyed with beryllium. The ability of beryllium, with the addition of small amounts of nickel, to age harden copper was discovered by Corson in 1926. Michael G. Corson was a metallurgist...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240469
EISBN: 978-1-62708-251-8
... resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230151
EISBN: 978-1-62708-298-3
... alloying additions can also increase the temperature range over which bcc beryllium is stable (i.e., cobalt, nickel, and copper). The solidification of pure beryllium does not reveal evidence of this phase transformation, probably because liquid beryllium can undercool below the transformation temperature...
Book Chapter

By Kenneth A. Walsh
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230001
EISBN: 978-1-62708-298-3
... Abstract Beryllium, despite its relatively simple atomic structure, possesses a wide range of useful engineering properties. It has the highest strength-to-weight ratio and modulus of elasticity among structural metals and is an important alloy addition in copper, nickel, and aluminum alloys...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230179
EISBN: 978-1-62708-298-3
... peritectically at 930 °C (1705 °F) and has a CsCl ordered cubic structure. The beta phase is a disordered solid solution stable above 620 °C (1150 °F). The solid solubility of beryllium in copper is sufficient to yield useful age-hardenable alloys with good electrical, strength, and wear properties. Fig...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300163
EISBN: 978-1-62708-323-2
... + Be Beryllium coppers only contain a fraction of a percent to about 3% Be, but the beryllium addition allows these alloys to age harden to as high as 44 HRC. Age hardened, they are the highest strength of all copper alloys, and they are commonly used for springs. Cu + Ni + Zn This family of alloys have...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240597
EISBN: 978-1-62708-251-8
... Abstract This chapter discusses the compositions, properties, and applications of nonferrous metals, including zirconium, hafnium, beryllium, lead, tin, gold, silver, and platinum group metals. It also addresses fusible alloys and provides melting temperatures for several compositions...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
..., is essentially commercially pure copper, which ordinarily is soft and ductile and contains less than about 0.7% total impurities. The high-copper alloys contain small amounts of various alloying elements, such as beryllium, cadmium, chromium, and iron, each having less than 8 at.% solid solubility...