Skip Nav Destination
Close Modal
Search Results for
behavior
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1263 Search Results for
behavior
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240201
EISBN: 978-1-62708-251-8
... Abstract The mechanical behavior of a material is its response to an applied load or force. Important mechanical properties are strength, hardness, stiffness, and ductility. This chapter discusses three principal ways in which these properties are tested: tension, compression, and shear...
Abstract
The mechanical behavior of a material is its response to an applied load or force. Important mechanical properties are strength, hardness, stiffness, and ductility. This chapter discusses three principal ways in which these properties are tested: tension, compression, and shear. Important tensile properties that can be determined by the tensile test include yield strength, ultimate tensile strength, ductility, resilience, and toughness. The chapter describes the effects of stress concentrations on ductile metals under cyclic loads. Other topics covered include combined stresses, yield criteria, and residual stresses of metals.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030021
EISBN: 978-1-62708-418-5
... not available in the individual components. Question 9. What Are the Factors that Affect Phase-Formation Behavior of High–Entropy Alloys? Answer The atomic-radius difference, δ r ( Ref 17 ), and the ratio between the entropy and enthalpy, Ω (T A ) ( Ref 18 ), can predict the formation...
Abstract
This chapter, presented in a question-and-answer format, covers many practical aspects of high-entropy alloys (HEAs). It provides clear and concise answers to more than 50 questions, imparting knowledge on alloying elements, heat treatments, diffusion mechanisms, phase formation, lattice distortion, crystal and grain structures, structure-property relationships, microstructure control, and characterization methods. It likewise explains how to calculate the effect of strengthening processes on the mechanical properties of HEAs and offers insights on how to balance strength, ductility, and density for specific applications. It also provides information on twinning behaviors, stacking faults, elastic properties, coating and film deposition methods, manufacturing challenges, and the use of computational techniques for alloy design.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.9781627084185
EISBN: 978-1-62708-418-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780238
EISBN: 978-1-62708-281-5
... Abstract This article reviews fatigue test methodologies, provides an overview of general fatigue behavior (crack initiation and propagation) in engineering plastics, and discusses some of the factors affecting the fatigue performance of polymers. In addition, it provides information...
Abstract
This article reviews fatigue test methodologies, provides an overview of general fatigue behavior (crack initiation and propagation) in engineering plastics, and discusses some of the factors affecting the fatigue performance of polymers. In addition, it provides information on fractography that provides useful insight into the nature of fracture processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610025
EISBN: 978-1-62708-303-4
..., are subjected to forces or loads. In order that excessive deformation or failure does not occur, it is important to know what effects these loads have on the part. The mechanical behavior of a material reflects the relationship between its response or deformation to an applied load or force. Important...
Abstract
This chapter discusses the stress-strain response of materials, how it is measured, and how it used to set performance expectations. It begins by describing the common tensile test and how it sheds light on the elastic design of structures as well as plasticity and fracture behaviors. It explains how engineering and true stress-strain curves differ, how one is used for design and the other for analyzing metal forming operations. It discusses the effect of holes, fillets, and radii on the distribution of stresses and the use of notch tensile testing to detect metallurgical embrittlement. The chapter also covers compression, shear, and torsion testing, the prediction of yielding, residual stress, and hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730023
EISBN: 978-1-62708-283-9
... Abstract The mechanical behavior of a material, in the most practical sense, is how it deforms or breaks under load; in other words, how it responds when stressed. This chapter provides a brief review of the properties associated with mechanical behavior, including stress, strain, elasticity...
Abstract
The mechanical behavior of a material, in the most practical sense, is how it deforms or breaks under load; in other words, how it responds when stressed. This chapter provides a brief review of the properties associated with mechanical behavior, including stress, strain, elasticity, plastic deformation, ductility, hardness, creep, fatigue, and fracture. It also describes the primary components of a Charpy impact tester and the role they serve.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730037
EISBN: 978-1-62708-283-9
... the significance of energy bands, intrinsic and extrinsic conduction, and the properties of compound semiconductors. It also covers semiconductor devices, including p-n junctions, light emitting diodes, transistors, and piezoelectric crystals. electrical behavior light emitting diodes transistors p-n...
Abstract
This chapter examines some of the behaviors that suit materials for electrical and electronic applications. It begins by explaining how charge carriers move in metals and semiconductors and how properties such as conductivity, mobility, and resistivity are derived. It discusses the significance of energy bands, intrinsic and extrinsic conduction, and the properties of compound semiconductors. It also covers semiconductor devices, including p-n junctions, light emitting diodes, transistors, and piezoelectric crystals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730051
EISBN: 978-1-62708-283-9
..., and magnetostatic energy, vary based on the size of the domain. It also discusses the process of magnetization and compares and contrasts hard and soft magnetic materials. ferromagnetism hard magnetic materials magnetic behavior soft magnetic materials Ferromagnetism Magnetism seems...
Abstract
This chapter is a review of magnetic materials and how they behave. It begins by discussing the significance of ferromagnetism and comparing the Curie temperature of several ferromagnetic elements. It then discusses the concept of magnetic domains and illustrates how flux paths, and magnetostatic energy, vary based on the size of the domain. It also discusses the process of magnetization and compares and contrasts hard and soft magnetic materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060013
EISBN: 978-1-62708-355-3
... Abstract This chapter focuses on mechanical behavior under conditions of uniaxial tension during tensile testing. It begins with a discussion of properties determined from the stress-strain curve of a metal, namely, tensile strength, yield strength, measures of ductility, modulus of elasticity...
Abstract
This chapter focuses on mechanical behavior under conditions of uniaxial tension during tensile testing. It begins with a discussion of properties determined from the stress-strain curve of a metal, namely, tensile strength, yield strength, measures of ductility, modulus of elasticity, and resilience. This is followed by a section describing the parameters determined from the true stress-true strain curve. The chapter then presents the mathematical expressions for the flow curve. The chapter reviews the effect of strain rate and temperature on the stress-strain curve and describes the instability in tensile deformation and stress distribution at the neck in the tensile specimen. It discusses the processes involved in ductility measurement and notch tensile test in tensile specimens. The parameter that is commonly used to characterize the anisotropy of sheet metal is covered. Finally, the chapter covers the characterization of fractures in tensile test specimens.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870025
EISBN: 978-1-62708-299-0
... the film is maintained by the oxidizing nature of the solution ( Ref 4 ). Additional information on the effect of pH on corrosion behavior of aluminum can be found in the section “ Environmental Variables ” in this chapter. Causes and Forms of Corrosion In most environments, the corrosion...
Abstract
Aluminum generally has excellent resistance to corrosion and gives years of maintenance-free service in natural atmospheres, fresh waters, seawater, many soils and chemicals, and most foods. This chapter explains why aluminum and aluminum alloys are naturally resistant to corrosion and describes the conditions and circumstances under which their natural defenses break down. It discusses the causes and forms of corrosion observed in aluminum alloys and the effect of composition, microstructure, processing history, and environmental variables such as impurities, fluid flow, surface area, pressure, and temperature.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
..., fatigue life, and stress rupture failures. ceramics engineering plastics fatigue crack propagation fracture toughness glasses mechanical behavior IN PREVIOUS CHAPTERS, discussion has focused on metals—their mechanical behavior and the analytical methods applicable to them. The structural...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Image
Published: 01 March 2006
Fig. 10.36 Small crack growth behavior doesn’t follow long-crack growth behavior; Nimonic 901 at room temperature (curves are from long-crack data, points are short crack data). Source: Ref 10.34
More
Image
Published: 01 January 2000
Fig. 22 Polarization behavior for a metal exhibiting active-passive anodic behavior. Source: ASTM Standard G 3
More
Image
in Crystalline Imperfections and Plastic Deformation
> Elements of Metallurgy and Engineering Alloys
Published: 01 June 2008
Fig. 2.10 Material behavior under stress
More
Image
Published: 01 June 2008
Fig. 12.6 Elastic and plastic behavior during tensile loading. Source: Ref 2
More
Image
Published: 01 June 2008
Fig. 14.4 Comparison of steel and aluminum fatigue behavior. Source: Ref 2
More
Image
Published: 01 June 2008
Fig. 18.17 Relative stress-corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride. Source: Ref 9
More
Image
Published: 01 December 2008
Fig. 2 Schematic illustration of polarization behavior for a passive alloy with and without pitting occurring
More
1