Skip Nav Destination
Close Modal
Search Results for
austenitic high alloy steel casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 494 Search Results for
austenitic high alloy steel casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200311
EISBN: 978-1-62708-354-6
... high alloy steels. austenitic high alloy steel casting cryogenic steel casting ferritic carbon steel casting low-temperature steel casting martensitic high alloy steel casting martensitic low alloy steel casting Opening image for Chapter 23, “Low-Temperature and Cryogenic Steels...
Abstract
This chapter defines low-temperature and cryogenic steels and describes their alloy classifications and their ambient and low-temperature properties. These steels include ferritic carbon and low alloy steels, martensitic low alloy steels, martensitic high alloy steels, and austenitic high alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200274
EISBN: 978-1-62708-354-6
... Abstract This chapter describes the definitions, designation, chemical composition, room-temperature properties, elevated-temperature properties, and corrosion resistance of cast high alloy steels and stainless steels. In addition, the corrosion resistance of cast corrosion-resistant alloys...
Abstract
This chapter describes the definitions, designation, chemical composition, room-temperature properties, elevated-temperature properties, and corrosion resistance of cast high alloy steels and stainless steels. In addition, the corrosion resistance of cast corrosion-resistant alloys is also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730069
EISBN: 978-1-62708-283-9
... enough carbon so that when heated they transform to austenite. The hardenability is so high that they form martensite even with slow cooling. Applications include razor and knife blades. Cast Irons Cast irons contain far more carbon than steel. Typical carbon contents range from 2 to 4% C with 1...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400001
EISBN: 978-1-62708-258-7
... temper embrittlement. Forms an undesirable iron phosphide (Fe 3 P) at high phosphorus levels (especially in cast irons) Sulfur (S) Usually considered an impurity in steel. Added to special steels for improved machinability Silicon (Si) An essential alloying element in most steels. Added...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060291
EISBN: 978-1-62708-261-7
... the classification, composition, properties, treatments, and applications of austenitic, ferritic, martensitic, duplex, precipitation-hardening, powder metallurgy, and cast stainless steels. It also reviews the history of stainless steels and provides information on alloy designation systems. austenitic...
Abstract
Steels that resist corrosive attack from normal atmospheric exposure and contain a minimum of 10.5% Cr and 50% Fe are generally classified as stainless steels. Their special qualities lie in a chromium-rich oxide surface film that quickly regrows when damaged. This chapter discusses the classification, composition, properties, treatments, and applications of austenitic, ferritic, martensitic, duplex, precipitation-hardening, powder metallurgy, and cast stainless steels. It also reviews the history of stainless steels and provides information on alloy designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310147
EISBN: 978-1-62708-286-0
...–1.2%. Maximum molybdenum for other alloys is 0.5%. HH contains 0.2% N (max). HP-50WZ also contains 4–6% W, 0.1–1.0% Zr, and 0.035% S (max) and P (max). Source: Ref 1 The High Alloy Product Group of the Steel Founder’s Society of America employs a naming system (ACI, the Alloy Casting...
Abstract
With typical alloy systems, casting is often the most convenient method by which to produce components. This is true for stainless steels, both for corrosion-resisting and for heat-resisting applications. This chapter discusses stainless steel casting alloys and their metallurgy. Foundry methods are discussed to the degree they are specific to the stainless alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170242
EISBN: 978-1-62708-297-6
... Applications in Japan , The Manganese Center , Paris 1984 Selected References Selected References • Subramanyam D.K. , Swansiger A.E. , and Avery H.S. , Austenitic Manganese Steels , Properties and Selection: Irons, Steels, and High-Performance Alloys , Vol 1 , ASM Handbook...
Abstract
This article provides an overview of austenitic manganese steels. It describes the standard composition ranges of commercial products and explains how various alloying elements affect mechanical properties, processing, and performance. The article also discusses special grades of manganese steels and the types of applications for which they have been developed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310331
EISBN: 978-1-62708-326-3
... hardening CAST IRONS, like steels, are iron-carbon alloys but with higher carbon levels than steels to take advantage of eutectic solidification in the binary iron-carbon system. Due to their relatively high silicon contents, commercial cast irons also are usually considered to be at least ternary Fe-C...
Abstract
Cast irons, like steels, are iron-carbon alloys but with higher carbon levels than steels to take advantage of eutectic solidification in the binary iron-carbon system. Like steel, heat treatment of cast iron includes stress relieving, annealing, normalizing, through hardening, and surface hardening. This chapter introduces solid-state heat treatment of iron castings, covering general considerations for heat treatment and discussing the processes, advantages, and disadvantages of heat treatment of cast iron.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200404
EISBN: 978-1-62708-354-6
...-1472 (0-800) 32-1832 (0-1000) α-μm/(m · °K) (a) 18.0 19.4 21.7 19.9 21.9 23.1 (a) To convert to μin./(in. · °F), multiply the values by 0.566. High Alloy Steels In general, cast austenitic stainless steels have mean coefficients of thermal expansion about 50% higher than...
Abstract
This chapter describes the physical properties of steels used for castings. The properties covered include density, modulus of elasticity, Poisson's ratio, shear modulus, thermal expansion, thermal conductivity, specific heat, thermal diffusivity, electrical resistivity, and magnetic properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250039
EISBN: 978-1-62708-345-4
... to hardenability. In addition, by nucleating transformation products, undissolved carbides can actively decrease hardenability. This is especially important in high-carbon (0.50 to 1.10%) and alloy carburizing steels, which may contain excess carbides at the austenitizing temperature. Consequently, such factors...
Abstract
This chapter describes important requirements for ferrous and nonferrous alloys used for gears. Wrought surface-hardening and through-hardening carbon and alloy steels are the most widely used of all gear materials and are emphasized in this chapter. The processing characteristics of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900219
EISBN: 978-1-62708-358-4
... by tempering at temperatures between 250 and 400 °C (480 and 750 °F). In the case of the H13 steel, high silicon and alloy contents defer the decomposition of the retained austenite to higher tempering temperatures. Overaging spheroidizes the interlath carbides, coarsens the intralath carbides, and increases...
Abstract
Steels for hot-work applications, designated as group H steels in the AISI classification system, have the capacity to resist softening during long or repeated exposures to high temperatures needed to hot work or die cast other materials. These steels are subdivided into three classes according to the alloying approach: chromium hot-work steels, tungsten hot-work steels, and molybdenum hot-work steels. This chapter discusses the composition, characteristics, applications, advantages, and disadvantages of each of these steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400023
EISBN: 978-1-62708-258-7
.... There are basically only three phases normally present in steels: ferrite, austenite, and cementite (graphite is also a phase found in cast irons and is discussed in the last section of this chapter). A phase, in this case, can only exist according to the iron-carbon phase diagram. Several important features...
Abstract
This chapter introduces the basic ferrous physical metallurgy principles that need to be understood by the metallographer. The discussion focuses on the variations in microstructures that are generated as a result of the phase transformations that occur during both heat treatment (as in steels) and solidification (as in cast irons). The chapter describes how the development of the iron-carbon phase diagram, coupled with the understanding of the kinetics of phase transformations through the use of isothermal transformation diagram, were breakthroughs in the advancement of ferrous physical metallurgy. Several examples of the morphological features of microstructural constituents in steels are also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060247
EISBN: 978-1-62708-261-7
... and cementite. Heat treatment and alloying also can develop a martensitic or austenitic matrix, respectively, much like that in steels. As in steel, the five basic matrix structures in cast iron include: ferrite, pearlite, bainite, martensite, and austenite. Thus, cast irons can develop very complex variations...
Abstract
The commercial relevance of cast irons is best understood in the context of the iron-carbon phase diagram, where their composition places them near the eutectic point, which sheds light on why they melt at lower temperatures than steel and why they can be cast into more intricate shapes. This chapter examines these unique properties and how they are derived. It begins by describing the basic metallurgy of cast iron, focusing on the eutectic reaction. It explains how to control the reaction and thus properties of cast iron by overcooling and inoculation. The chapter also discusses composition, microstructure, heat treatments, and the classification and casting characteristics of white, gray, ductile, malleable, compacted graphite, and special cast irons.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310233
EISBN: 978-1-62708-326-3
... Cu; 0.15–0.45 Nb 17-7 PH S17700 0.09 1.00 1.00 16.0–18.0 6.5–7.75 0.04 0.04 0.75–1.5 Al (a) Single values are maximum values unless otherwise indicated. (b) Optional For cast stainless steels, the High Alloy Product Group of the Steel Founders’ Society of America...
Abstract
This chapter discusses the composition and classification of stainless steels and focuses on the processes involved in heat treatment and applications of these steels. The wrought and the cast stainless steels covered are ferritic, austenitic, duplex (ferritic-austenitic), martensitic, and precipitation-hardening. In addition, information on special considerations for stainless steel castings is also provided. The heat treatment processes explained in the chapter are preheating, annealing, stress relieving, hardening, tempering, austenite conditioning, heat aging, and nitride surface hardening. Finally, some special considerations for stainless steel castings are discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320195
EISBN: 978-1-62708-332-4
... ADI more widely and with improved success. austemperability austempered ductile iron austempering austenitizing iron castings retained austenite tensile properties UNLIKE CONVENTIONAL QUENCH and temper heat treatment, austempering is an iron and steel heat-treatment process...
Abstract
Unlike conventional quench and temper heat treatment, austempering is an iron and steel heat-treatment process that enhances mechanical properties through the isothermal transformation of austenite with a minimum amount of quenching stresses. This chapter begins with a discussion of austemperability requirements. Then outlines of austenitizing and austempering cycles and resultant microstructures are presented. This is followed by sections discussing the mechanical properties, advantages, limitations, machinability, process variants, and applications of austempered ductile iron (ADI). Information on the growth of premachined ADI components is also provided. Further, the chapter describes two slightly different systems for austempering: atmospheric-salt and salt-salt systems. Finally, it presents general guidelines for component designers, casting manufacturers, and heat treaters to apply ADI more widely and with improved success.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240433
EISBN: 978-1-62708-251-8
..., the availability of superduplex (25 wt% Cr) stainless steel alloys in a variety of forms is important. The 25 wt% Cr superduplex materials have a carefully controlled composition and balanced austenitic/ferritic structure, with substantial molybdenum and nitrogen contents. Bar, forgings, castings, sheet, plate...
Abstract
This chapter discusses the classification, composition, properties, and applications of five types of stainless steels: austenitic, ferritic, duplex, martensitic, and precipitation-hardening steels. It discusses the process involved in argon oxygen decarburization that is used to refine stainless steel. The chapter also provides information on the classification and composition of stainless steel castings. It concludes with a brief description of the Schaeffler constitution diagram which is useful in predicting the type of stainless steel as a function of its alloy content.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220551
EISBN: 978-1-62708-259-4
... and guarantee the uniformity of the austenite before quenching. Controlling austenitic grain size is extremely important to ensure reasonable toughness and this, combined with the need for high austenitizing temperatures, is one of the challenges in alloy design and processing in this family of steels...
Abstract
Steels with chromium contents above 12% show high resistance to oxidation and corrosion and are generally designated as stainless steels. This chapter discusses the compositions, microstructures, heat treatments, and properties of martensitic, ferritic, austenitic, ferritic-austenitic (duplex), and precipitation hardening stainless steels. It also describes solidification sequences and explains how chromium carbides may segregate to grain boundaries at certain temperatures, making grain boundary regions susceptible to intercrystalline or intergranular corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200369
EISBN: 978-1-62708-354-6
... Abstract This chapter covers the basics of weldability of cast steels such as carbon and low alloy steels, corrosion-resistant high alloy steels, nickel-base alloys, heat-resistant high alloy steels, and wear-resistant high austenitic manganese steels. It provides an overview of weld overlay...
Abstract
This chapter covers the basics of weldability of cast steels such as carbon and low alloy steels, corrosion-resistant high alloy steels, nickel-base alloys, heat-resistant high alloy steels, and wear-resistant high austenitic manganese steels. It provides an overview of weld overlay and hard facing; cast-weld construction; and plasma arc cutting and plasma arc welding. The chapter discusses different types of welding processes. These include shielded metal-arc welding, air carbon arc cutting process, gas tungsten-arc welding, gas metal-arc welding process, flux-cored arc welding, submerged arc welding, and electroslag and electro-gas welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140107
EISBN: 978-1-62708-264-8
... for high-carbon steels). It also addresses process-specific issues, explaining how the presence of carbides (in the two-phase process) produces significant changes, and how homogenization and austenite grain growth influence the single-phase process. austenitization cast iron high-carbon steel low...
Abstract
The first step in the hardening of steel is getting it hot enough to form austenite, from which martensite can form upon quenching. Not all steels have the same austenitization requirements, however. High-carbon wear-resistant steels, such as bearing and tool steels, require the presence of carbides during austenitization; plain carbon and low-alloy steels do not. This chapter describes the austenitization process used in each of the two cases, namely single-phase austenitization (the accepted method for plain carbon low-alloy steels) and two-phase austenitization (required for high-carbon steels). It also addresses process-specific issues, explaining how the presence of carbides (in the two-phase process) produces significant changes, and how homogenization and austenite grain growth influence the single-phase process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310155
EISBN: 978-1-62708-286-0
... was not only very expensive, the carbon levels that could be achieved were not much below 0.10%, making most of today’s stainless steels, whose carbon levels range from 0.010% in stabilized ferritic alloys to about 0.07% in normal austenitic alloys, impossible to produce. The advent of AOD, continuous casting...
Abstract
This article discusses the steps in the primary processing of stainless steels: melting, refining, remelting, casting, and hot rolling. It provides information of the major categories of defects in hot rolled stainless steels, namely hot mill defects, inclusion-related defects, and hot ductility-related defects.
1