Skip Nav Destination
Close Modal
Search Results for
austenite decomposition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 205 Search Results for
austenite decomposition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in The Various Microstructures of Room-Temperature Steel
> Steel Metallurgy for the Non-Metallurgist
Published: 01 November 2007
Fig. 4.23 Austenite decomposition products for plain carbon steels during isothermal transformation (quenching and holding) at various temperatures below A 1
More
Image
in Modeling and Use of Correlations in Heat Treatment
> Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
Published: 01 December 1996
Fig. 9-1 Schematic illustration of the effect of the decomposition of austenite during cooling on the transformation products present after quenching
More
Image
in Modeling and Use of Correlations in Heat Treatment
> Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
Published: 01 December 1996
Fig. 9-46 Calculated start curve of the decomposition of austenite upon continuous cooling for 4068 steel. (From same source as Fig. 9-45 )
More
Image
in The Various Microstructures of Room-Temperature Steel
> Steel Metallurgy for the Non-Metallurgist
Published: 01 November 2007
Fig. 4.4 Phase diagram analysis of the decomposition of 0.4 and 0.95% C austenite on cooling to the pearlite temperature, 727 °C (1340 °F)
More
Image
Published: 01 January 1998
Fig. 8-3 IT diagram for decomposition of austenite in an L-type tool steel containing 1.01% C, 0.50% Mn, 0.30% Si, and 1.21% Cr. Specimens were austenitized for 30 min at 815 °C (1500 °F). Source: Ref 3
More
Image
Published: 01 January 1998
Fig. 8-12 Isothermal decomposition of austenite at room temperature in an L2 steel, containing 1.0% C, 1.56% Cr, and 0.20% V, after different quenching treatments. Specimens quenched to temperatures above room temperature were held at temperature for 5 min and air cooled. Source: Ref 13
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220193
EISBN: 978-1-62708-259-4
... Abstract Heat treatment is the most common way of altering the mechanical, physical, and even chemical properties of steels. This chapter describes the changes that occur in carbon and low-alloy steels during conventional heat treatments. It explains how austenite decomposition largely defines...
Abstract
Heat treatment is the most common way of altering the mechanical, physical, and even chemical properties of steels. This chapter describes the changes that occur in carbon and low-alloy steels during conventional heat treatments. It explains how austenite decomposition largely defines the final microstructure, and how the associated phase transformations are driven by nucleation and growth processes. It describes diffusionless and diffusive growth mechanisms and provides detailed information on the properties, structure, and behaviors of the transformation products produced, namely martensite and bainite. It also discusses the formation of austenite, the control and measurement of austenitic grain size, the characteristics of ferritic microstructures, and the methods used to classify ferrite morphology.
Image
in Advanced Steels for Forming Operations
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
to 650 °C (1200 °F), at 1.0 °C/s (2 °F/s), and quenched in flowing helium. The carbon enrichment in the white areas, together with the austenite decomposition, was sufficient for the formation of MA on quenching. Etchant: LePera. Optical microscope, polarized light. Courtesy of M. S. Andrade, CETEC, MG
More
Image
in Conventional Heat Treatment—Basic Concepts
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 10.57 Dilatometry measurements of the linear expansion (length change) of a steel slowly and rapidly cooled. During slow cooling the volume change associated with austenite decomposition happens at high temperatures, when the material is very ductile and has lower yield strength. Stresses
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410113
EISBN: 978-1-62708-265-5
... Considerations—Cooling-Rate-Induced Changes in Ferrite The various ferrite morphologies and other microstructural products of austenite decomposition result from increasingly restricted atom motion with decreasing temperature of transformation. Iron atom rearrangement from austenite to equiaxed ferrite...
Abstract
This chapter describes the ferritic microstructures that form in carbon steels under continuous cooling conditions. It begins with a review of the Dubé classification system for crystal morphologies. It then explains how cooling-rate-induced changes involving carbon atom diffusion and the associated rearrangement of iron atoms produce the wide variety of morphologies and microstructures observed in ferrite. The chapter also describes a classification system developed specifically for ferritic microstructures and uses it to compare common forms of ferrite, including polygonal or equiaxed ferrite, Widmanstatten ferrite, quasi-polygonal or massive ferrite, acicular ferrite, and granular ferrite.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310055
EISBN: 978-1-62708-326-3
... Abstract The decomposition of austenite, during controlled cooling or quenching, produces a wide variety of microstructures in response to such factors as steel composition, temperature of transformation, and cooling rate. This chapter provides a detailed discussion on the isothermal...
Abstract
The decomposition of austenite, during controlled cooling or quenching, produces a wide variety of microstructures in response to such factors as steel composition, temperature of transformation, and cooling rate. This chapter provides a detailed discussion on the isothermal transformation and continuous cooling transformation diagrams that characterize the conditions that produce the various microstructures. It discusses the mechanism and process variables of quenching of steel, explaining the factors involved in the mechanism of quenching. In addition, the chapter provides information on the causes and characteristics of residual stresses, distortion, and quench cracking of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410099
EISBN: 978-1-62708-265-5
... of cementite in ferritic microstructures makes possible a clear differentiation of intermediate-temperature-transformation products of austenite decomposition. According to a microstructural definition of bainite in steels as a non-lamellar ferrite-cementite product of austenite transformation, Aaronson et...
Abstract
Bainite is an intermediate temperature transformation product of austenite. This chapter describes the conditions under which bainite is likely to form. It discusses the effects of alloying on bainitic transformation, the difference between upper and lower bainite, and the influence of solute drag on bainite formation mechanisms. It also discusses the development of ferrite-carbide bainites and their effect on toughness, hardness, and ductility.
Image
in Stainless Steels
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 16.40 (a) The duplex stainless steel presented in Fig. 16.30 after a 12 h treatment at 750 °C (1380 °F). All ferrite has decomposed into austenite and sigma (σ). Larger austenite grains and finer structure composed of austenite and sigma (including some sigma at larger austenite grain
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560283
EISBN: 978-1-62708-291-4
... precipitation, the decomposition of retained austenite, and recovery and recrystallization. It also includes images that reveal the characteristic structures produced by tempering medium-carbon hypoeutectoid and hypereutectoid steels as well as the effects of plastic deformation, austenitic grain size...
Abstract
This chapter describes the effects that can be observed by light microscopy when a steel in the hardened condition, consisting of martensite and possibly some retained austenite, is heated at subcritical temperatures. It includes micrographs that illustrate the effect of carbide precipitation, the decomposition of retained austenite, and recovery and recrystallization. It also includes images that reveal the characteristic structures produced by tempering medium-carbon hypoeutectoid and hypereutectoid steels as well as the effects of plastic deformation, austenitic grain size, and temper brittleness.
Image
in Stainless Steels
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 16.34 ASTM A890/A890M Grade 6A cast duplex stainless steel annealed at 980 °C (1795 °F) and quenched. Austenite (light) and ferrite. At this temperature, ferrite decomposes into austenite and sigma phase (σ). Thus, there are two types (and sizes) of austenite: large grains, formed prior
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560003
EISBN: 978-1-62708-353-9
... Abstract This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels...
Abstract
This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels. This includes a presentation of the iron-carbon phase diagram and the equilibrium phases. The chapter also covers the common microconstituents that form in steels, including the nomenclature used to describe them. The chapter provides a comparison of isothermal and continuous cooling TTT diagrams. These diagrams are affected by the carbon and alloy content and by the prior austenite grain size, and the way in which these factors affect them is examined.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320005
EISBN: 978-1-62708-347-8
.... It addresses the processes involved in the transformation (decomposition) of austenite to achieve various microstructures. austenite transformation iron-carbon phase diagram melting point steel HEATING PURE IRON to its melting point and then allowing it to cool slowly results in an idealized time...
Abstract
The properties of steel are affected markedly as the percentage of carbon varies. This chapter describes the properties of alloys of iron and carbon, including a review of the iron-carbon phase diagram and, in particular, the portion of the diagram relevant to carbon steels. It addresses the processes involved in the transformation (decomposition) of austenite to achieve various microstructures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900193
EISBN: 978-1-62708-358-4
... carbides formed at lower temperatures by austenite decomposition to ferrite-carbide microstructures, annealing, or tempering, and spheroidization of the carbides in those microstructures. Figure 11-1(a) shows a high density of smaller, secondary carbides that have been spheroidized by lengthy annealing...
Abstract
The air-hardening cold-work tool steels, designated as group A steels in the AISI classification system, achieve their processing and performance characteristics with combinations of high carbon and moderately high alloy content. This chapter describes the microstructural features and hardenability of air-hardening cold-work tool steels and discusses the processes involved in the hardening and tempering of tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220273
EISBN: 978-1-62708-259-4
... sure that the decomposition of austenite only happens under the desired, slow cooling conditions. These parts can be cooled under insulated campanulas or boxes, buried in thermal insulating minerals such as vermiculite, powdered lime, dry sand, ashes, or other media. It is essential to guarantee slow...
Abstract
This chapter provides a practical understanding of heat treatments and how to employ them to optimize the properties and structures of cast irons and steels. It discusses annealing, normalizing, quenching, tempering, patenting, carburizing, nitriding, carbonitriding, and nitrocarburizing. It describes the primary objectives of each treatment along with processing sequences, process parameters, and related phase transformations. The chapter contains more than 100 images, including time-temperature diagrams, transformation curves, data plots, and detailed micro- and macrographs. It also discusses the concepts of hardenability, critical diameter, quench severity, and Jominy testing.
Image
in Modeling and Use of Correlations in Heat Treatment
> Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
Published: 01 December 1996
Fig. 9-41 Schematic illustration of the mathematical relations needed to determine the progress of the decomposition of austenite during cooling
More
1