Skip Nav Destination
Close Modal
Search Results for
atomic number
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 640 Search Results for
atomic number
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 April 2013
Fig. 13 Scanning Auger mapping of elements, including some of low atomic number, in a foreign particle on an integrated circuit. Note also the ability to distinguish between elemental silicon and silicon oxide due to bonding effects on Auger energies. (a) Secondary electron image of particle
More
Image
Published: 01 December 1999
Fig. 1.7 The limiting amount of added element (of atomic number less than that of iron) to promote internal oxidation. See also Fig. 1.2(b) . Adapted from Ref 6 Element Atomic number Atomic size relative to iron, % Interstitial elements Hydrogen 1 –58 Carbon 6 –34
More
Image
Published: 01 November 2019
Image
Published: 01 August 2013
Fig. 1.1 The periodic table of the elements. The atomic numbers are in the upper right corners and the atomic wts (in amu) at the bottom.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730159
EISBN: 978-1-62708-283-9
... Abstract This appendix contains a table listing the symbol, atomic number, atomic weight, melting temperature, density, atomic radius, and crystal structure of various elements. chemical elements atomic number atomic weight density atomic radius Elementary Materials Science William...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720233
EISBN: 978-1-62708-305-8
... advantages for improved contrast on low atomic number materials, discrimination between isotopes, or inspection of radioactive specimens. electromagnetic radiation gamma ray radiography neutron radiography radiation gaging real-time inspection X-ray radiography RADIOGRAPHY is a nondestructive...
Abstract
This chapter discusses radiography methods using x-rays, gamma rays, and neutrons. It begins with a discussion on the applications and principles of radiography followed by sections providing information on the sources of radiation, classifications, and characteristics of x-ray tubes. Three primary attenuation processes of electromagnetic radiation, namely photoelectric effect, Compton scattering, and pair production, are covered. The chapter then discusses the principles of shadow formation, the process involved in the conversion of radiation into a form suitable for observation, and the characteristics of x-ray film. It provides information on various exposure factors in film radiography. The chapter provides a description of the characteristics that differentiate neutron radiography from x-ray or gamma ray radiography. The application of neutron radiography is described in terms of its advantages for improved contrast on low atomic number materials, discrimination between isotopes, or inspection of radioactive specimens.
Image
Published: 01 December 2008
Fig. 8.3 The number of atoms and the ratio of atoms on the outermost layer forming a close-packed cluster. (The number of atoms on the outermost layer exceeds 50% of the total composing atoms in a smaller cluster than the type of a regular icosahedron of i = 6.)
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720139
EISBN: 978-1-62708-305-8
... number 5 or higher. Older energy dispersive units with beryllium window detectors are limited to atomic number 11 or higher. Typical uses are: Qualitative and quantitative chemical analysis for major and minor elements in metals and alloys Determination of composition and thickness of thin...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by x-ray fluorescence (XRF) and optical emission spectroscopy (OES). High-temperature combustion and inert gas fusion methods are typically used to analyze dissolved gases (oxygen, nitrogen, and hydrogen) and, in some cases, carbon and sulfur in metals. This chapter discusses the operating principles of XRF, OES, combustion and inert gas fusion analysis, surface analysis, and scanning auger microprobe analysis. The details of equipment set-up used for chemical composition analysis as well as the capabilities of related techniques of these methods are also covered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110434
EISBN: 978-1-62708-247-1
... an outer shell electron drops down, thereby releasing energy. This energy may be released as an x-ray, or it may be carried away by another electron, known as an Auger electron, emitted from an outer shell. The Auger effect tends to dominate for low atomic number elements, and so relatively few x-rays...
Abstract
This article provides an overview of the most common micro-analytical technique in the failure analysis laboratory: energy dispersive X-ray spectroscopy (EDS). It discusses the general characteristics, advantages, and disadvantages of some of the X-ray detectors attached to the scanning electron microscope chamber including the lithium-drifted EDS detector, silicon drift detector (SDD), and wavelength dispersive X-ray detector. The article then provides information on qualitative and quantitative X-ray analysis programs followed by a discussion on EDS elemental mapping. The discussion includes a comparison of scanning transmission electron microscope-EDS elemental mapping and mapping with an SDD. A brief section is devoted to the discussion on the artifacts that occur during X-ray mapping.
Image
in Metallographic Technique—Electron Microscopy and Other Advanced Techniques
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 6.2 Schematic presentation of the volume in a sample that is excited by the incident electron beam, as a function of material atomic number (Z) and beam acceleration voltage (V), and thus energy (E). In some cases, the sampled volume may have a much larger diameter than the incident beam
More
Image
Published: 01 April 2013
Fig. 12 Scanning Auger identification of elements, including some of low atomic number, present in several phases in a copper-beryllium alloy. (a) Secondary electron image showing inclusions. (b-e) Auger spectra obtained from the indicated microstructural features. (b) The long rod shaped
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400149
EISBN: 978-1-62708-258-7
... in diameter). Electrons also interact with the atoms in the steel sample in a number of ways, and, as a result, additional useful information can be generated. In fact, the different electron microscopes mentioned previously are designed to take advantage of these electron/metal interactions. The various...
Abstract
Several specialized instruments are available for the metallographer to use as tools to gather key information on the characteristics of the microstructure being analyzed. These include microscopes that use electrons as a source of illumination instead of light and x-ray diffraction equipment. This chapter describes how these instruments can be used to gather important information about a microstructure. The instruments covered include image analyzers, transmission electron microscopes, scanning electron microscopes, electron probe microanalyzers, scanning transmission electron microscopes, x-ray diffractometers, microhardness testers, and hot microhardness testers. A list of other instruments that are usually located in a research laboratory or specialized testing laboratory is also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730001
EISBN: 978-1-62708-283-9
... are arranged in order of increasing atomic number. Fig. 1.1 The periodic table of the elements. The atomic numbers are in the upper right corners and the atomic wts (in amu) at the bottom. The table includes periods (typically horizontal) and groups (typically vertical). Elements in groups share...
Abstract
This chapter discusses the foundational principles of materials science. It begins with a review of the periodic table and the fundamental particles, including atoms, ions, and molecules, that constitute matter. It also reviews the types of bonds that form between atoms and the relative levels of force they produce. It describes the difference between crystalline and noncrystalline or amorphous materials and discusses common crystal structures, including face-centered cubic, body-centered cubic, hexagonal close packed, and diamond cubic. It also describes the structure of sodium chloride and includes a list of structurally similar compounds.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220085
EISBN: 978-1-62708-259-4
... the electron beam impinges the sample surface is excited by the beam. This is a key concept in electron microscopy and should be kept in mind. The sample volume excited by an impinging electron beam depends on the electron energy (measured by the acceleration voltage) and the atomic number of the sample...
Abstract
This chapter discusses the use of electron microscopy in metallographic analysis. It explains how electrons interact with metals and how these interactions can be harnessed to produce two- and three-dimensional images of metal surfaces and generate crystallographic and compositional data as well. It discusses the basic design and operating principles of scanning electron microscopes, transmission electron microscopes, and scanning transmission electron microscopes and how they are typically used. It describes the additional information contained in backscattered electrons and emitted x-rays and the methods used to access it, namely wavelength and energy dispersive spectroscopy and electron backscattering diffraction techniques. It also describes the role of focused ion beam milling in sample preparation and provides information on atom probes, atomic force microscopes, and laser scanning microscopes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430107
EISBN: 978-1-62708-253-2
... of the sample but provides image contrast as a function of elemental composition. This makes the BSE mode a powerful compositional analysis tool for the material under investigation. The intensity of the BSE signal is a function of the average atomic number ( Z ) of the specimen. Heavier elements produce more...
Abstract
This chapter describes some of the most effective tools for investigating boiler tube failures, including scanning electron microscopy, optical emission spectroscopy, atomic absorption spectroscopy, x-ray fluorescence spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. It explains how the tools work and what they reveal. It also covers the topic of image analysis and its application in the measurement of grain size, phase/volume fraction, delta ferrite and retained austenite, inclusion rating, depth of carburization/decarburization, scale thickness, pearlite banding, microhardness, and hardness profiles. The chapter concludes with a brief discussion on the effect of scaling and deposition and how to measure it.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140063
EISBN: 978-1-62708-264-8
..., if the atoms are able to jump back and forth fast enough. Notice in the periodic table in the inside back cover that the atomic number of a carbon atom is much less than that of an iron atom, only 12 versus 26. This means that the carbon atom is much smaller than an iron atom. Mainly for this reason, a carbon...
Abstract
Diffusion is the primary mechanism by which carbon atoms move or migrate in iron. It is driven by concentration gradients and aided by heat. This chapter provides a practical understanding of the diffusion process and its role in the production and treatment of steel. It discusses the factors that determine diffusion rates and distances, including time, temperature, and the relative size of the atoms involved. It also describes two heat treating methods, carburizing and decarburizing, where carbon diffusion plays a central role.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240625
EISBN: 978-1-62708-251-8
... Abstract This appendix explains how to calculate atomic packing factors, lattice parameters, and coordination numbers for cubic crystal structures, including simple, body-centered, and face-centered cubic systems. It also addresses hexagonal close-packed systems. atomic packing factors...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060001
EISBN: 978-1-62708-343-0
... jumps during creep. At a given temperature and zero stress, atoms are in a constant stage of agitation and can jump randomly from one atomic position to another. The actual motion is really facilitated by the result of the motion of vacancies. They are present in the lattice in large numbers...
Abstract
This chapter familiarizes readers with the mechanisms involved in creep and how they are related to fatigue behavior. It explains that what we observe as creep deformation is the gradual displacement of atoms in the direction of an applied stress aided by diffusion, dislocation movement, and grain boundary sliding. It describes these mechanisms in qualitative terms, explaining how they are driven by thermal energy and how they can be analyzed using creep curves and deformation maps. In addition, it examines the types of damage associated with creep, presents a number of creep strain and strain rate equations, explains how to determine creep constants, and reviews the findings of several studies on cyclic loading. It also discusses the development of a novel test that measures the cyclic creep-rupture resistance of materials in tension and compression.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230001
EISBN: 978-1-62708-298-3
... of the first short period of the periodic table. Beryllium has an atomic number of 4 and an atomic weight of 9.012182, and it is unique among the elements of even atomic number in that it has a single, stable, naturally occurring isotope ( 4 Be 7 ). Table 1.1 shows the radioisotopes for beryllium. Its...
Abstract
Beryllium, despite its relatively simple atomic structure, possesses a wide range of useful engineering properties. It has the highest strength-to-weight ratio and modulus of elasticity among structural metals and is an important alloy addition in copper, nickel, and aluminum alloys. It also has excellent thermal properties, low atomic mass, a small x-ray absorption cross section, and a large neutron scattering cross section. This brief introductory chapter provides an overview of the unique qualities of beryllium along with typical applications and uses.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230151
EISBN: 978-1-62708-298-3
... Transformations Beryllium is an unusual metal in many ways. Its atomic number is 4, making it the only element with an even atomic number that has only one stable isotope. This stable isotope has mass number 9, but a number of radioactive isotopes are known, and they have mass numbers that range from 6 to 11...
Abstract
This chapter provides an overview of the physical metallurgy of beryllium, discussing phases and phase transformations, physical and mechanical properties, heat treatment, and alloying. It explains how the atomic structure of beryllium, particularly its sp hybrid state, contributes to the anisotropy of elastic constants and slip properties, resulting in a specific stiffness, or modulus-to-density ratio, six times higher than that of any other structural material.
1