Skip Nav Destination
Close Modal
Search Results for
anisotropic grain
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 108 Search Results for
anisotropic grain
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310173
EISBN: 978-1-62708-286-0
... to give a fine-grained, fully recrystallized, yet beneficially anisotropic, microstructure. Figure 5 shows how the FLD of an enhanced 409 ferritic stainless steel, 409 Ultra Form, compares to the already highly evolved 409. Fig. 5 Optimized 409 for forming versus normal 409. Source: Ref 5...
Abstract
The various types of stainless steel have very different deformation characteristics in terms of strain hardening and anisotropy. It is important to understand and exploit these characteristics to optimize forming of stainless steels. This chapter discusses the various deformation processes involved in sheet-forming techniques, namely stretch forming and deep drawing. In addition, it provides information on some of the factors pertinent to cold-heading and hot forming of stainless long products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730121
EISBN: 978-1-62708-283-9
... are approximately 20 times the radial tensile strengths. Plywood The orientation dependence of properties can be largely circumvented by the use of plywood, composed of plies oriented with their grain at 90° to one another. The plies are cut from rotating logs that have been softened with moisture ( Fig...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850267
EISBN: 978-1-62708-260-0
... illumination techniques is imperative with materials exhibiting low contrast or with optically anisotropic materials, especially those that are difficult to etch. Light microscopy has numerous applications. The most important application is the determination of the structural phases present...
Abstract
This chapter discusses the tools and techniques of light microscopy and how they are used in the study of materials. It reviews the basic physics of light, the inner workings of light microscopes, and the relationship between resolution and depth of field. It explains the difference between amplitude and optical-phase features and how they are revealed using appropriate illumination methods. It compares images obtained using bright field and dark field illumination, polarized and cross-polarized light, and interference-contrast techniques. It also discusses the use of photometers, provides best practices and recommendations for photographing structures and features of interest, and describes the capabilities of hot-stage and hot-cell microscopes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000017
EISBN: 978-1-62708-313-3
... strengthening up to temperatures as high as 1300 °C (2370 °F) ( Ref 10 ). The other is that the microstructure produced by consolidation of the MA powder through hot extrusion can be modified by thermal treatments and zone annealing to produce a highly anisotropic, coarse-grained structure with a GAR close...
Abstract
This chapter discusses the metallurgical changes that occur and the improvements that can be achieved in superalloys through solid-solution hardening, precipitation hardening, and dispersion strengthening. It also explains how further improvements can be achieved through the control of grain structure, as in columnar-grained alloys, or by the elimination of grain boundaries as with single-crystal superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850165
EISBN: 978-1-62708-260-0
... of examples of structures that are observable in the as-polished condition are presented in Chap. 2 . Anisotropic metals, such as beryllium, uranium, or zirconium, can be examined using crossed-polarized light without recourse to etching. Isotropic metals do not respond to polarized light, although...
Abstract
This chapter explains how to achieve accurate, sharp delineation of the microstructure of metals using appropriate etching and contrasting techniques. It covers a variety of methods, including chemical etching, heat tinting, gas contrasting, vapor deposition, magnetic etching, ion bombardment, and dislocation etch pitting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870001
EISBN: 978-1-62708-314-0
... as anisotropic. However, even bulk materials such as metals can become anisotropic—for example, if they are highly cold worked to produce grain alignment in a certain direction. Consider the unidirectional fiber-reinforced composite ply (also known as a lamina ) shown in Fig. 1.6 . The coordinate system...
Abstract
This chapter covers the basic aspects of composite materials. It describes the arrangement, form, and function of their constituent materials and explains how they perform better in combination than on their own. It discusses the directional nature of isotropic, anisotropic, and orthotropic materials, the orientation of plies in unidirectional (lamina) and quasi-isotropic (laminate) lay-ups, and the dominant role of fibers in determining strength, stiffness, and other lamina properties. The chapter also compares the engineering attributes of composites with those of metals and includes application examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060115
EISBN: 978-1-62708-355-3
... is applied, whereas the anelastic strains are time dependent. Fig. 8 Optical photomicrograph of type 304 stainless steel. The apparent defects include grain boundaries, twin boundaries, and inclusions. 100× Fig. 9 Dislocations. (a) Transmission electron micrograph of type 304 stainless...
Abstract
The tensile test provides a relatively easy, inexpensive technique for developing mechanical property data for the selection, qualification, and utilization of metals and alloys in engineering service. The tensile test requires interpretation, and interpretation requires a knowledge of the factors that influence the test results. This chapter provides a metallurgical perspective for such interpretation. The topics covered include elastic behavior, anelasticity, damping, proportional limit, yield point, ultimate strength, toughness, ductility, strain hardening, and yielding and the onset of plasticity. The chapter describes the effects of grain size on yielding, effect of cold work on hardness and strength, and effects of temperature and strain-rate on the properties of metals and alloys. It provides information on true stress-strain relationships and special tests developed to measure the effects of test/specimen conditions. Finally, the chapter covers the characterization of tensile fractures of ductile metals and alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290169
EISBN: 978-1-62708-319-5
... particles, but each particle can have up to seven necks at the start of sintering. The two-particle sintering profile is shown in Fig. 8.2 . The spherical particles are D in diameter with a neck X in diameter. A grain boundary forms in the neck due to differences in crystal orientation between...
Abstract
After shaping and first-stage binder removal, the component (with remaining backbone binder) is heated to the sintering temperature. Further heating induces densification, evident as dimensional shrinkage, pore rounding, and improved strength. This chapter begins with a discussion on the events that are contributing to sintering densification, followed by a discussion on the driving forces, such as surface energy, and high-temperature atomic motion as well as the factors affecting these processes. The process of microstructure evolution in sintering is then described, followed by a discussion on the tools used for measuring bulk properties to monitor sintering and density. The effects of key parameters, such as particle size, oxygen content, sintering atmosphere, and peak temperature, on the sintered properties are discussed. Further, the chapter covers sintering cycles and sintering practices adopted as well as provides information on dimensional control and related concerns of sintering. Cost issues associated with sintering are finally covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720161
EISBN: 978-1-62708-305-8
..., and the effects of grain size on the structural properties of the material. etchants etching grain size number grinding light optical microscopy metallography microphotography mounting polishing sectioning THE METHODS AND EQUIPMENT described in this chapter cover the preparation of specimens...
Abstract
This chapter describes the methods and equipment applicable to metallographic studies and discusses the preparation of specimens for examination by light optical microscopy. Five major operations for preparation of metallographic specimens are discussed: sectioning, mounting, grinding, polishing, and etching. The discussion covers their basic principles, advantages, types, and applications, as well as the equipment setup. The chapter includes tables that list etchants used for microscopic examination. It also provides information on microscopic examination, microphotography, and the effects of grain size on the structural properties of the material.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900203
EISBN: 978-1-62708-358-4
... 6 7 6 Minor factors Usual working hardness, HRC 58–64 58–64 58–64 58–63 58–66 Depth of hardening D D D D D Finest grain size at full hardness, Shepherd standard 7½ 7½ 7½ 7½ 7½ Surface hardness as-quenched, HRC 61–64 64–66 64–66 61–64 64–68 Core hardness (25...
Abstract
The high-carbon, high-chromium tool steels, designated as group D steels in the AISI classification system, are the most highly alloyed cold-work steels. This chapter describes the microstructures and hardenability of high-carbon, high-chromium tool steels and discusses the processes involved in the hardening and tempering of tool steels. It also covers the selection criteria and applications of high-carbon, high-chromium tool steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480095
EISBN: 978-1-62708-318-8
..., the effect of grain size and crystal orientation, the concept of texture strengthening, and the principles of strain hardening and superplasticity. It also discusses the effect of annealing and the difference between recrystallization and neocrystallization processes. annealing deformation...
Abstract
Titanium, like other metals, can be shaped, formed, and strengthened through deformation processes. This chapter describes the structural changes that occur in titanium during deformation and how they can be controlled. It discusses the role of slip, dislocations, and twinning, the effect of grain size and crystal orientation, the concept of texture strengthening, and the principles of strain hardening and superplasticity. It also discusses the effect of annealing and the difference between recrystallization and neocrystallization processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190001
EISBN: 978-1-62708-296-9
... grains and the process by which they form. It describes how cooling rates, temperature gradients, and local concentrations influence the topology of the crystallization front, and how they play a role in determining the morphology and dispersion degree of the grains observed in cross sections of cast...
Abstract
This chapter serves as a study and guide on the main phase constituents of cast aluminum-silicon alloys, alpha-Al solid solution and Si crystals. The first section focuses on the structure of Al-Si castings in the as-cast state, covering the morphology of the alpha-Al solid solution grains and the process by which they form. It describes how cooling rates, temperature gradients, and local concentrations influence the topology of the crystallization front, and how they play a role in determining the morphology and dispersion degree of the grains observed in cross sections of cast parts. It also describes the mechanism behind dendritic grain crystallization and how factors such as surface tension, capillary length, and lattice symmetry affect dendritic arm size and spacing. The section that follows examines the morphology of the silicon crystals that form in aluminum-silicon castings and its effect on properties and processing characteristics. It discusses the faceted nature of primary Si crystals and the modification techniques used to optimize their shape. It also describes the morphology of the (alpha-Al + Si) eutectic, which can be lamellar or rodlike in shape, and explains how it can be modified through temperature control or alloy additions to improve properties such as tensile strength and plasticity and reduce shrinkage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320123
EISBN: 978-1-62708-357-7
... Abstract This chapter considers various behaviors of microstructural interfaces from a thermodynamics viewpoint. It discusses energy of surface and interface, the Gibbs-Thomson Effect, grain-boundary segregation, smooth and rough interfaces, and grain growth. gas molecules grain boundary...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230295
EISBN: 978-1-62708-298-3
...) that become trapped in the solidified metal. In addition, the as-cast grain size is excessively large, being 50 to 100 μm in diameter, while grain sizes of 15 μm or less are required to meet acceptable strength and ductility requirements [ Marder et al. 1990 , Haws 2000 ]. Attempts at refining the as-cast...
Abstract
The vast majority of beryllium products are manufactured from blocks, forms, or billets of compacted powder that are machined or worked into shape. This chapter describes the metalworking processes used, including rolling, forming, forging, extrusion, drawing, and spinning. It covers the qualitative and quantitative aspects of each process and provides examples showing how they are implemented and the results that can be achieved. The chapter also discusses the issue of beryllium’s low formability and describes some of the advancements that have been made in near-net shape processing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610209
EISBN: 978-1-62708-303-4
... Abstract This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which...
Abstract
This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280025
EISBN: 978-1-62708-267-9
... treatment interactions, are the size, shape, and orientation (in anisotropic structures) of the grains. As previously indicated, grain size varies considerably from cast to wrought structure, generally being significantly smaller for the latter. Special processing—for example, directional solidification...
Abstract
This chapter describes the metallurgy of superalloys and the extent to which it can be controlled. It discusses the alloying elements, crystal structures, and processing sequences associated with more than a dozen phases that largely determine the characteristics of superalloys, including their properties, behaviors, and microstructure. It examines the role of more than 20 alloying elements, including phosphorus (promotes carbide precipitation), boron (improves creep properties), lanthanum (increases hot corrosion resistance), and carbon and tungsten which serve as matrix stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290201
EISBN: 978-1-62708-319-5
.... As the sinter bonds grow between particles, grain-boundary diffusion becomes active in promoting shrinkage. Once shrinkage starts, the particle size role is secondary, and attention shifts to the grain size. For particles in the 6 to 12 μm range, sintered strength is unchanged once the peak temperature exceeds...
Abstract
This chapter provides details on powder-binder processing for three materials, namely precipitation-hardened 17-4 PH stainless steel, cemented carbides, and alumina. The types of powders, binders, feedstock, shaping processes, debinding, sintering cycles, compositions, microstructure, distortion, postsintering treatments, and mechanical properties are presented for each. The shaping options include powder-binder approaches such as binder jetting, injection molding, extrusion, slip and slurry casting, centrifugal casting, tape casting, and additive manufacturing. Sintering options are outlined with respect to attaining high final properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290251
EISBN: 978-1-62708-319-5
... additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process...
Abstract
This chapter is intended to identify materials, processes, and designs that will lead to great advances in powder-binder forming technologies. It discusses some of the structures obtained through these advances in powder-binder technologies such as binder jetting and extrusion-based additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930003
EISBN: 978-1-62708-359-1
... Abstract It is well established that solidification behavior in the fusion zone controls the size and shape of grains, the extent of segregation, and the distribution of inclusions and defects such as porosity and hot cracks. Since the properties and integrity of the weld metal depend...
Abstract
It is well established that solidification behavior in the fusion zone controls the size and shape of grains, the extent of segregation, and the distribution of inclusions and defects such as porosity and hot cracks. Since the properties and integrity of the weld metal depend on the solidification behavior and the resulting microstructural characteristics, understanding weld pool solidification behavior is essential. This article provides a general introduction of key welding variables including solidification of the weld metal or fusion zone and microstructure of the weld and heat-affected zone. It discusses the effects of welding on microstructure and the causes and remedies of common welding flaws.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240509
EISBN: 978-1-62708-251-8
... on the specific alloy. Wrought alloys also develop crystallographic texturing during mechanical deformation, leading to anisotropic mechanical properties. For example, a rolled sheet with a tensile strength of 220 MPa (32 ksi) and 2% elongation measured parallel to the rolling direction may display higher...
Abstract
Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys and wrought magnesium alloys. It also discusses the nominal compositions, properties, and applications of commercially pure zinc, zinc casting alloys, and wrought zinc alloys.