Skip Nav Destination
Close Modal
Search Results for
amorphous phase
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 175 Search Results for
amorphous phase
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Fig. 2.21 The outlines of enthalpy, entropy, and free energy of amorphous phase and the measured samples of glass transition temperature. The nature of amorphous phase is not known well, and there are a lot of unknowns. (a) H-T. (b) S-T. (c) G-T. (d) T g - T m
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320013
EISBN: 978-1-62708-357-7
... understanding of the U , S , and F of the crystal. It covers basic concepts of thermodynamics of magnetic transition and discusses the role and the meaning of magnetic transition in iron and steel. The chapter concludes with a general discussion on an amorphous phase from a thermodynamic viewpoint...
Abstract
This chapter describes the basics of energy and entropy and “free energy.” Fundamentals of internal energy U , the enthalpy H , entropy S , free energies G , and F of a substance are presented. The chapter also presents the thermal vibration model to promote a better understanding of the U , S , and F of the crystal. It covers basic concepts of thermodynamics of magnetic transition and discusses the role and the meaning of magnetic transition in iron and steel. The chapter concludes with a general discussion on an amorphous phase from a thermodynamic viewpoint.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230145
EISBN: 978-1-62708-298-3
... 2204 730 10.7 4.13 5.05 14.7 Metglas, Allied Signal Corporation. Source: Davis et al. 1976 At the time of this work, the detailed mechanism of deformation for these amorphous phases was not known. Because there was a similarity in the relationship between stiffness and hardness...
Abstract
Beryllium is an important additive in the production of amorphous metal alloys, achieving low density and high strength. It also plays a role in amorphous alloys that can be slowly cooled and still retain their amorphous structure. This chapter provides information on the development of amorphous alloys that contain beryllium and the applications for which they are suited.
Image
Published: 01 November 2019
Figure 17 High-resolution phase contrast image of (a) normal copper-tantalum interface and (b) abnormal copper-tantalum interface separated by an amorphous layer that can lead to a resistive connection.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230179
EISBN: 978-1-62708-298-3
...). The compound TiBe 2 melts peritectically at 1360 °C (2480 °F) and is a C-15 Laves phase. There is a metastable compound, TiBe, which has the ordered cubic CsCl crystal structure. It can be formed by quenching from the liquid or by precipitation from the amorphous phase that is formed by quenching molten alloy...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780238
EISBN: 978-1-62708-281-5
... increases craze strength, creep-rupture strength, and endurance limit under cyclic loading conditions ( Ref 3 , 5 , 18 , 22 ). Semicrystalline polymers provide improved fatigue resistance over glassy amorphous polymers. One explanation is that the composite, two-phase structure offers enhanced...
Abstract
This article reviews fatigue test methodologies, provides an overview of general fatigue behavior (crack initiation and propagation) in engineering plastics, and discusses some of the factors affecting the fatigue performance of polymers. In addition, it provides information on fractography that provides useful insight into the nature of fracture processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090333
EISBN: 978-1-62708-266-2
... passivating elements. corrosion behavior hydrogen embrittlement melt-spun amorphous alloys stress-corrosion cracking AMORPHOUS ALLOYS consist of a chemically homogeneous single phase; hence, amorphous iron-base alloys that contain certain amounts of strongly passivating elements such as chromium...
Abstract
Amorphous alloys, because of their lack of crystallographic slip planes, are assumed to be insensitive to the selective corrosion attack that causes stress-corrosion cracking (SCC) in crystalline alloys. However, under certain conditions, melt-spun amorphous alloys have proven vulnerable to SCC due to hydrogen embrittlement. This chapter presents findings from several studies on this phenomenon, describing test conditions as well as cracking and fracture behaviors. It also discusses the effect of deformation on corrosion behavior, particularly for alloys without strongly passivating elements.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320123
EISBN: 978-1-62708-357-7
... to understand the essence of the grain boundary. [Exercise 5.2] Find out the approximation of the grain-boundary energy σ gb by considering the random grain boundary to be an amorphous phase with the thickness of 3 atoms placed with the crystals I and II. Here, it is assumed that the latent heat...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870063
EISBN: 978-1-62708-314-0
... alteration, (2) rubber elastomer second phase toughening, (3) thermoplastic elastomer toughening, and (4) interlayering. Network Alteration Since the brittleness of thermosetting polymers is a direct consequence of their high crosslink densities, one method of toughening a thermoset polymer...
Abstract
This chapter discusses the use of thermoset and thermoplastic resins in polymer matrix composites. It begins by explaining how the two classes of polymer differ and how it impacts their use as matrix materials. It then goes on to describe the characteristics of polyester, vinyl ester, epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730081
EISBN: 978-1-62708-283-9
..., amorphous carbon, and fullerenes. None of these forms can be classified as a metal, ceramic, or polymer. Figure 8.14 shows the equilibrium between graphite, diamond, and liquid. Fig. 8.14 Phase diagram showing the equilibrium phases of carbon. Source: Ref 8.2 Diamond Each carbon atom...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110461
EISBN: 978-1-62708-247-1
... of crystalline and amorphous semiconductor device features. The phase contrast supplemented by mass-thickness contrast is primarily used during high-resolution imaging of sub-nanometer device features and defects. Diffraction in Silicon Devices Most semiconductor devices are fabricated on single crystal...
Abstract
The ultimate goal of the failure analysis process is to find physical evidence that can identify the root cause of the failure. Transmission electron microscopy (TEM) has emerged as a powerful tool to characterize subtle defects. This article discusses the sample preparation procedures based on focused ion beam milling used for TEM sample preparation. It describes the principles behind commonly used imaging modes in semiconductor failure analysis and how these operation modes can be utilized to selectively maximize signal from specific beam-specimen interactions to generate useful information about the defect. Various elemental analysis techniques, namely energy dispersive spectroscopy, electron energy loss spectroscopy, and energy-filtered TEM, are described using examples encountered in failure analysis. The origin of different image contrast mechanisms, their interpretation, and analytical techniques for composition analysis are discussed. The article also provides information on the use of off-axis electron holography technique in failure analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
..., refractoriness, and high compression strength. They are seldom used in tensile-loaded structures, because they are brittle (with minimal ductility) and very sensitive to stress raisers. However, ceramics may be toughened with a more ductile second phase to create a composite or aggregate. This nil ductility...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780028
EISBN: 978-1-62708-281-5
... to 945 ksi) and a glass-transition temperature ( T g ) (amorphous) of 75 to 105 °C (165 to 220 °F). Molecular Structure Polymer molecules contain multiple repeat units called mers. The number of repeat units can be varied, and this strongly affects the thermal, mechanical, and rheological...
Abstract
This article describes in more detail the fundamental building-block level, atomic, then expands to a discussion of molecular considerations, intermolecular structures, and finally supermolecular issues. An explanation of important thermal, mechanical, and physical properties of engineering plastics and commodity plastics follows, and the final section briefly outlines the most common plastics manufacturing processes.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230047
EISBN: 978-1-62708-351-5
... a New MBF-Series of Ni-Cr-B-S-Amorphous Brazing Foils , Weld. J. Res. Suppl. , Vol 77 ( No. 2 ), p 66s – 75s • Samsonova N.N. and Budberg P.D. , 1995 . Cr-Ti-V , Handbook of Ternary Alloy Phase Diagrams , Vol 7 , Villars , Prince , and Okamoto , Ed., ASM...
Abstract
This chapter presents an overview of families of brazing alloys that one is likely to encounter in a manufacturing environment. It discusses the metallurgical aspects of brazing and includes a survey of brazing alloy systems. A discussion of deleterious and beneficial impurities is provided with examples. The chapter also describes the application of phase diagrams to brazing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860203
EISBN: 978-1-62708-348-5
... . Plenum Press , New York , 46 – 50 . 10.1007/978-1-4757-0244-6_6 Amorphous Magnetism (1973) (eds. Hooper H. O. and de Graaf A. M. ). Plenum Press , New York . Amorphous Magnetism II (1977) (eds. Levy R. A. and Hasegawa R. ). Plenum Press , New York...
Abstract
This chapter provides a view of magnetism in materials used at low temperatures. The discussion covers the concepts, definitions, and systems of units that are unique to the study of magnetic properties. The chapter provides a description of some of the techniques and devices used for determining magnetic properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780295
EISBN: 978-1-62708-281-5
..., thermal conductivity increases with the percentage of crystalline and amorphous phases, ρ c and ρ a ( Ref 5 ): (Eq 1) λ c λ a ∼ ( ρ c ρ a ) 6 For the purpose of thermal stress determination, it is convenient to consider the thermal...
Abstract
In an attempt to explain the stresses encountered in the plastics industry, this article first defines the different types of internal stresses in amorphous polymers. Each type of thermal stress is then discussed in detail, with reference to the mechanism of generation and the effect on engineering properties. Methods of detecting and measuring internal stresses are also presented. The article then describes the combined effects of thermal stresses and orientation that result from processing conditions. Finally, it discusses numerous aspects of physical aging and the use of high-modulus graphite fibers in amorphous polymers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730011
EISBN: 978-1-62708-283-9
... of matter is called a phase. A phase may be a solid, a liquid, or a gas. A phase may be a pure material or a solution of several components. A solid phase is either crystalline or amorphous (noncrystalline). A crystalline phase has a characteristic crystal structure and a definite composition range...
Abstract
Phases are distinct states of aggregation of matter and one of the primary leverage points for understanding and applying materials. This chapter discusses the phase nature of metals and alloys, the concept of solid solutions, and the use of phase diagrams. It also describes some of the metallurgical effects of freezing or solidification, including the segregation of solutes and the formation of metal glasses.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290035
EISBN: 978-1-62708-319-5
... of the options rely on similar steps of binder removal, followed by sintering densification. Fig. 3.1 Outline of how constituents of backbone, filler, and additive phases are combined to produce a binder and, in turn, the powder-binder combination provides a feedstock used for shaping. The binder jetting...
Abstract
Generally, binders consist of at least three ingredients: a backbone to provide strength (compounds such as polyethylene, polypropylene, ethylene vinyl acetate, and polystyrene); a filler, such as polyacetal and paraffin wax, to occupy space between particles; and additives, such as stearates, stearic acid, or magnesium stearate, as well as phosphates and sulfonates, to adjust viscosity, lubricate tooling, disperse particles, or induce binder wetting of the powder. In the case of binders deposited via ink jet printing, the binder contains solvents to lower the viscosity for easier jetting. The chapter provides a detailed description of these constituents. The requirements of a binder as well as the factors determining the physical and thermal properties of polymers are discussed. Then, two factors associated with solvation of polymers, namely solubility parameter and wetting, are covered. The chapter ends with information on the specification of polymers used in binders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310001
EISBN: 978-1-62708-326-3
... atoms are arranged in a solid can vary depending on the nature of the bonds between the atoms, the temperature, and the relative amount of each type of atom present. Solids have either random (amorphous) structures or spatially symmetric ( crystalline ) structures. The phase of a solid refers...
Abstract
The building block of all matter, including metals, is the atom. This chapter initially provides information on atomic bonding and the crystal structure of metals and alloys, followed by a description of three crystal lattice structures of metals: face-centered cubic, hexagonal close-packed, and body-centered cubic. It then describes the four main divisions of crystal defects, namely point defects, line defects, planar defects, and volume defects. The chapter provides information on grain boundaries of metals, processes involved in atomic diffusion, and key properties of a solid solution. It also explains the aspects of a phase diagram that shows what phase or phases are present in the alloy under conditions of thermal equilibrium. Finally, a discussion on the applications of equilibrium phase diagrams is presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060013
EISBN: 978-1-62708-261-7
... amounts of the different types of atoms that are present. Solids either have random (amorphous) structures or spatially symmetric ( crystalline ) structures. Molten metals, under normal conditions of solidification, normally form long-range, orderly crystalline structures. The phase of a solid refers...
Abstract
This chapter introduces many of the key concepts on which metallurgy is based. It begins with an overview of the atomic nature of matter and the forces that link atoms together in crystal lattice structures. It discusses the types of imperfections (or defects) that occur in the crystal structure of metals and their role in mechanical deformation, annealing, precipitation, and diffusion. It describes the concept of solid solutions and the effect of temperature on solubility and phase transformations. The chapter also discusses the formation of solidification structures, the use of equilibrium phase diagrams, the role of enthalpy and Gibb’s free energy in chemical reactions, and a method for determining phase compositions along the solidus and liquidus lines.
1