Skip Nav Destination
Close Modal
Search Results for
aluminum-base alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 870 Search Results for
aluminum-base alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 July 1997
Fig. 8 Relative crack sensitivity ratings of selected aluminum (base alloy/filler alloy) combinations
More
Image
Published: 01 June 2008
Fig. 30.4 Effect of aluminum and titanium content on strength of nickel-base alloys at 870 °C (1600 °F). Source: Ref 4
More
Image
in Corrosion by Halogen and Hydrogen Halides
> High-Temperature Corrosion and Materials Applications
Published: 01 November 2007
Fig. 6.23 Corrosion of several aluminum-containing nickel-base alloys with and without molybdenum in Ar-20O 2 -0.25Cl 2 at 900 °C (1650 °F). Source: Ref 39
More
Image
Published: 01 March 2006
Fig. 3.4 Strain-based approach. (a) Retained ductility of 24ST aluminum alloy. Source: Ref 3.4 . (b) Fracture characteristics of 24ST aluminum alloy as a function of the number of cycles of cyclic straining. Source: Ref 3.4 . (c) Reconstruction of Sach’s data to suggest a power-law relation
More
Image
Published: 01 January 2015
Fig. 12.4 Effects of tin and aluminum on tensile strength of alpha-alloy base metal and weld-joint bend ductility
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.10 Relative rankings of notch toughness of aluminum casting alloys based upon notch-yield ratio. (a) Sand castings. (b) Permanent mold castings. (c) Premium engineered castings
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.12 Rankings of notch toughness of welds in aluminum casting alloys based upon notch-yield ratio for combinations of casting alloys and filler alloys (middle number)
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.19 Ratings of aluminum alloy castings based on unit propagation energy from tear tests. (a) Sand castings. (b) Permanent mold castings. (c) Premium engineered castings
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930283
EISBN: 978-1-62708-359-1
... from cracking, tensile or shear strength of the weld, weld ductility, service temperature, corrosion resistance, and color match between the weld and base alloy after anodizing. A number of factors, both global and local, that influence the fatigue performance of welded aluminum joints are also covered...
Abstract
This article reviews weldability of aluminum alloys and factors that affect weld performance. It first addresses hot tears, which can form during the welding of various aluminum alloys. It then presents comparison data from different weldability tests and discusses the specific properties that affect welding, namely oxide characteristics; the solubility of hydrogen in molten aluminum; and its thermal, electrical, and nonmagnetic characteristics. The article addresses the primary factors commonly considered when selecting a welding filler alloy, namely ease of welding or freedom from cracking, tensile or shear strength of the weld, weld ductility, service temperature, corrosion resistance, and color match between the weld and base alloy after anodizing. A number of factors, both global and local, that influence the fatigue performance of welded aluminum joints are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440231
EISBN: 978-1-62708-262-4
... metals, although there are some iron-base alloys that are hardened by the precipitation mechanisms (see Chapter 10, “Heat Treating of Stainless Steels” ). Compositions and typical uses of some commonly used alloys of aluminum, copper, magnesium, and nickel that respond readily to precipitation hardening...
Abstract
This chapter presents an overview of heat treating of nonferrous alloys. First, a brief discussion on the effects of cold work and annealing on nonferrous alloys is presented. This is followed by a discussion on the mechanisms involved in the more commonly used heat treating procedures for hardening or strengthening, namely solution treating and aging. Examples are presented for heat treating of two commercially important nonferrous alloys, one from the aluminum-copper system and one from the copper-beryllium system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870161
EISBN: 978-1-62708-299-0
... of weldments in aluminum alloys is affected by the alloy being welded and by the filler alloy and welding process used. Galvanic cells that cause corrosion can be created because of corrosion potential differences among the base (parent) metal, the filler metal, and the heat-affected regions where...
Abstract
This chapter describes the factors that affect the corrosion performance of aluminum assemblies joined by methods such as welding, brazing, soldering, and adhesive bonding. The factors covered include galvanic effects, crevices, and assembly stresses in products susceptible to stress-corrosion cracking.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820143
EISBN: 978-1-62708-339-3
... among the base (parent) metal, the filler metal, and the heat-affected regions where microstructural changes have been produced. Corrosion Resistance Wrought aluminum alloys can be classified as either non-heat treatable alloys or heat treatable alloys ( Table 1 ). The corrosion resistance...
Abstract
The nonferrous alloys described in this chapter include aluminum and aluminum alloys, copper and copper alloys, titanium and titanium alloys, zirconium and zirconium alloys, and tantalum and tantalum alloys. Some of the factors that affect the corrosion performance of welded nonferrous assemblies include galvanic effects, crevices, assembly stresses in products susceptible to stress-corrosion cracking, and hydrogen pickup and subsequent cracking. The emphasis is placed on the compositions, general welding considerations, and corrosion behavior of these alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000009
EISBN: 978-1-62708-313-3
.... Unfortunately, γ′ precipitation only occurs at low levels of aluminum in nickel-iron-base alloys (further described in section 5.4, “Aluminum,” in this book), which means that most nickel-iron-base superalloys rely on titanium additions for hardening through the precipitation of γ′-Ni 3 Ti. Long-term exposure...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030112
EISBN: 978-1-62708-282-2
... on microstructure, hardness, and corrosion potential of welded assemblies of three aluminum alloys. The differences in corrosion potential between the HAZ and the base metal can lead to selective corrosion. (a) Alloy 5456-H321 base metal with alloy 5556 filler; 3-pass metal inert gas weld. (b) Alloy 2219-T87 base...
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230047
EISBN: 978-1-62708-351-5
... 842 Brittle, volatile 12.6 Si 577 1071 High melting point 94.0 Zn 381 718 Volatile, low melting point Low-melting-point aluminum braze compositions, based on the Al-20Cu-Si base alloy Table 2.15 Low-melting-point aluminum braze compositions, based on the Al-20Cu-Si base alloy...
Abstract
This chapter presents an overview of families of brazing alloys that one is likely to encounter in a manufacturing environment. It discusses the metallurgical aspects of brazing and includes a survey of brazing alloy systems. A discussion of deleterious and beneficial impurities is provided with examples. The chapter also describes the application of phase diagrams to brazing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170003
EISBN: 978-1-62708-297-6
... of excellent grain refiners in steels, while titanium, vanadium, aluminum, and zirconium additions to carbon and low-alloy steels inhibit grain growth. Atoms of a different element can be added to the base metal (up to the limit of solid solubility for the second element), but these new atoms...
Abstract
This article discusses the general purpose of alloying and identifies some of the material properties and behaviors that can be improved by adding various elements to the base metal. It explains how alloying can make metals stronger and more resistant to corrosion and wear as well as easier to cast, weld, form, and machine. It also discusses some of the alloying techniques that have been developed to address problems stemming from dissimilarities between the base metal and alloying or inoculate material.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090241
EISBN: 978-1-62708-266-2
... temperature was 60 °C (140 °F). Beyond the limits of its passive range, aluminum corrodes in aqueous solutions because its oxides are soluble in many acids and bases, yielding Al 3+ ions in the former and (aluminate) ions in the latter. There are, however, instances when corrosion does not occur...
Abstract
Aluminum is protected by a barrier oxide film that, if damaged, reforms immediately in most environments. Despite this inherent corrosion resistance, there are conditions where aluminum alloys, like many materials, are subject to the effects of stress-corrosion cracking (SCC). This chapter describes those conditions, focusing initially on the effects of alloying elements and temper on solution potential and how it compares to other metals. It then addresses the issue of intergranular corrosion and its role in SCC. It explains how factors such as stress loads, grain structure, and environment determine whether or not stress-corrosion cracking develops in a susceptible alloy. It also provides stress-corrosion ratings for many alloys, tempers, and product forms and includes information on hydrogen-induced cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060273
EISBN: 978-1-62708-355-3
... steels, wrought; normalized, quenched and tempered 1296 188 400 58 Low-alloy carburizing steels; wrought, quenched and tempered 1227 178 427 62 Nickel-base superalloys 1186 172 276 40 Alloy steels, cast; quenched and tempered 1172 170 772 112 Stainless steels; cast 1138 165...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240563
EISBN: 978-1-62708-251-8
... properties. Fig. 30.4 Effect of aluminum and titanium content on strength of nickel-base alloys at 870 °C (1600 °F). Source: Ref 4 Fig. 30.5 Microstructure of a precipitation-strengthened nickel-base superalloy. Original magnification: 6000×. Source: Ref 5 The important superalloy...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys designed for high-temperature applications, generally above 540 deg C. This chapter covers the metallurgy, composition, and properties of cast and wrought superalloys. It provides information on melting, heat treating, and secondary fabrication processes. It also covers coating technology, including aluminide diffusion and overlay coatings, and addresses the advantages and disadvantages of superalloys in various applications.
1