Skip Nav Destination
Close Modal
Search Results for
aluminum casting alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1336 Search Results for
aluminum casting alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
... Abstract Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Image
Published: 01 October 2012
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.10 Relative rankings of notch toughness of aluminum casting alloys based upon notch-yield ratio. (a) Sand castings. (b) Permanent mold castings. (c) Premium engineered castings
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.12 Rankings of notch toughness of welds in aluminum casting alloys based upon notch-yield ratio for combinations of casting alloys and filler alloys (middle number)
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.15 Notch-yield ratio versus tensile yield strength for aluminum casting alloys at –320 °F (–196 °C) and –423 °F (–253 °C)
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190089
EISBN: 978-1-62708-296-9
..., before and after modification. The chapter also provides composition data and includes callouts identifying various phase constituents in the interdendritic eutectic microstructure. cast aluminum-silicon alloys microstructure phase constituents MICROSTRUCTURE IMAGES represent...
Abstract
This chapter is an atlas of microstructures observed in AlSi7Mg, AlSi11, and Al21CuNiMg modified with either eutectic (strontium, sodium) or hypereutectic (phosphorus) silicon crystals. The microstructure images reveal the as-cast state of gravity castings made in sand and metal molds, before and after modification. The chapter also provides composition data and includes callouts identifying various phase constituents in the interdendritic eutectic microstructure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.9781627082969
EISBN: 978-1-62708-296-9
Image
Published: 01 June 2008
Image
Published: 01 December 2006
Fig. 6.71 Schematic arrangement of the continuous casting of aluminum alloys with a nozzle and a float
More
Image
Published: 01 December 2016
Fig. 3 Microstructure of the aluminum-silicon casting alloys. (a) Hypoeutectic alloy (UEU, Fig. 1 )—model: network. (b) Eutectic alloy (EU, Fig. 1 )—model: grains. (c) Hypereutectic alloy (OEU, Fig. 1 )—model: dispersive. Light microscopy, etched with 1HF(1)
More
Image
Published: 01 October 2012
Fig. 2.25 Modification of aluminum-silicon casting alloys. (a) Unmodified. (b) Modified. Source: Ref 2.21
More
Image
Published: 01 October 2012
Image
Published: 01 June 2008
Fig. 26.9 Modification of aluminum-silicon casting alloys. (a) Unmodified. (b) Modified. Original magnification: 100×. Source: Ref 12
More
Image
Published: 01 June 2008
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140133
EISBN: 978-1-62708-335-5
... Abstract This data set presents aging response curves for a wide range of aluminum casting alloys. The aging response curves are of two types: room-temperature, or "natural," curves and artificial, or "high-temperature," curves. The curves in each group are presented in the numeric sequence...
Abstract
This data set presents aging response curves for a wide range of aluminum casting alloys. The aging response curves are of two types: room-temperature, or "natural," curves and artificial, or "high-temperature," curves. The curves in each group are presented in the numeric sequence of the casting alloy designation. The curves included are the results of measurements on individual lots considered representative of the respective alloys and tempers. The properties considered are yield strength, ultimate tensile strength, elongation, and Brinell hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870259
EISBN: 978-1-62708-299-0
... Abstract This appendix includes composition limit data for aluminum castings and ingots. aluminum alloys cast aluminum alloys chemical composition ingots Composition limits for unalloyed and alloyed aluminum castings (<italic>xxx</italic>.0) and ingots (<italic>xxx</italic>.1...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140175
EISBN: 978-1-62708-335-5
... Abstract This data set contains approximately 50 growth curves for a wide range of aluminum casting alloys at various temperatures. Growth curves are used to determine the dimensional changes that must be anticipated during service in applications where close dimensional tolerances are required...
Abstract
This data set contains approximately 50 growth curves for a wide range of aluminum casting alloys at various temperatures. Growth curves are used to determine the dimensional changes that must be anticipated during service in applications where close dimensional tolerances are required. Hardness curves are provided for many of the alloys. The hardness values are from corresponding aging response studies in which measurements were made on individual lots considered representative of the respective alloys and tempers.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.9781627083355
EISBN: 978-1-62708-335-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140069
EISBN: 978-1-62708-335-5
... Abstract This chapter reviews and provides data tables for the wide range of properties and performance characteristics that are possible with specific aluminum casting alloys and tempers. Properties and performance attributes addressed include casting and finishing characteristics; typical...
Abstract
This chapter reviews and provides data tables for the wide range of properties and performance characteristics that are possible with specific aluminum casting alloys and tempers. Properties and performance attributes addressed include casting and finishing characteristics; typical physical properties; typical and minimum (design) mechanical properties; fatigue strength; fracture resistance, including subcritical crack growth; and resistance to general corrosion and to stress-corrosion cracking. The chapter concludes with information on the properties of cast aluminum matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240509
EISBN: 978-1-62708-251-8
... that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys...
Abstract
Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys and wrought magnesium alloys. It also discusses the nominal compositions, properties, and applications of commercially pure zinc, zinc casting alloys, and wrought zinc alloys.
1