Skip Nav Destination
Close Modal
Search Results for
aluminum alloy castings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1371 Search Results for
aluminum alloy castings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.9781627083355
EISBN: 978-1-62708-335-5
Image
Published: 01 October 2012
Fig. 12.8 Applications for aluminum alloy castings. (a) Alloy 319 automotive cylinder head. (b) Alloy 380 automotive transmission case. Source: Ref 12.16
More
Image
in Hot Isostatic Processing
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 6.3 Weibull analysis of fatigue data for A357.0-T6 aluminum alloy castings with and without Densal II HIP. Source: Ref 6
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.2 Average tensile properties of representative aluminum alloy castings produced by vacuum technology. UTS, ultimate tensile strength; TYS, tensile yield strength. Source: Ref 17
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.5 Fatigue properties of 295.0 aluminum alloy castings with various degrees of porosity. Source: Ref 22
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.8 Axial-stress ( R = 0) fatigue properties of welded aluminum alloy castings. Source: Ref 21
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.14 Notch-yield ratio as a function of temperature for aluminum alloy castings. (a) Sand castings, 2xx.0, 5xx.0, and 6xx.0 alloys. (b) Sand castings, 3xx.0 alloys. (c) Permanent mold castings. (d) Premium engineered castings
More
Image
in Properties and Performance of Aluminum Castings
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 8.19 Ratings of aluminum alloy castings based on unit propagation energy from tear tests. (a) Sand castings. (b) Permanent mold castings. (c) Premium engineered castings
More
Image
Published: 01 October 2012
Fig. 1.5 Aluminum alloy cast products. (a) Aluminum alloy 380.0 gearbox casting for passenger car. (b) Aluminum alloy 380.0 rear axle casting. Source: Ref 1.1
More
Image
Published: 30 June 2023
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
... Abstract Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870259
EISBN: 978-1-62708-299-0
... Abstract This appendix includes composition limit data for aluminum castings and ingots. aluminum alloys cast aluminum alloys chemical composition ingots Composition limits for unalloyed and alloyed aluminum castings (<italic>xxx</italic>.0) and ingots (<italic>xxx</italic>.1...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340479
EISBN: 978-1-62708-427-7
... Abstract This appendix tabulates chemical composition limits for commonly used aluminum casting alloys registered with the Aluminum Association (AA). aluminum casting alloys chemical composition A compilation of some commonly used aluminum casting alloys and their chemical...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140021
EISBN: 978-1-62708-335-5
... Abstract This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes and their variants...
Abstract
This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes and their variants: expendable mold gravity-feed casting, nonexpendable (permanent) mold gravity feed casting, and pressure die casting. Next, the chapter describes the technologies used to produce premium engineered castings and when such castings may be relevant. The chapter concludes with descriptions of other process technologies used with castings, including metallurgical bonding, metal-matrix composites, and hot isostatic pressing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140055
EISBN: 978-1-62708-335-5
.... It describes the effect of HIP on tensile properties and on the fatigue performance of aluminum alloy castings. In addition, the chapter discusses the processes involved in radiographic inspection of HIP-processed castings. aluminum alloys castings fatigue performance hot isostatic pressing...
Abstract
Hot isostatic pressing (HIP) is a process refinement available to address internal porosity in castings. The HIP process may be used, in particular, for applications requiring very high quality and performance. This chapter discusses the principles, advantages, and disadvantages of HIP. It describes the effect of HIP on tensile properties and on the fatigue performance of aluminum alloy castings. In addition, the chapter discusses the processes involved in radiographic inspection of HIP-processed castings.
Image
in Hot Isostatic Processing
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 6.4 Fatigue S - N curves for VCR/PCR and sand cast A356.0-T6 aluminum alloy castings with and without Densal II HIP
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140299
EISBN: 978-1-62708-335-5
... Abstract This appendix contains abbreviations and symbols related to aluminum alloy castings. aluminum alloy castings aluminum alloys symbols Aluminum Alloy Castings: Properties, Processes, and Applications Copyright © 2004 ASM International® J. Gilbert Kaufman and Elwin L. Rooy All...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140299
EISBN: 978-1-62708-335-5
... Abstract This appendix contains abbreviations and symbols related to aluminum alloy castings. aluminum alloy castings aluminum alloys symbols ...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140301
EISBN: 978-1-62708-335-5
... Abstract This appendix contains drawings that illustrate the test specimens used in generating the data related to aluminum alloy castings. aluminum alloy castings aluminum alloys test specimens The following drawings illustrate the test specimens used in generating the data...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140293
EISBN: 978-1-62708-335-5
... Abstract This appendix is a compilation of terms and definitions related to cast aluminum products, their production, and their properties. aluminum alloy castings aluminum alloys cast aluminum alloys The following list of terms is associated primarily with cast aluminum products...
1