Skip Nav Destination
Close Modal
Search Results for
aluminide diffusion coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 68 Search Results for
aluminide diffusion coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 March 2002
Fig. 13.20 Ductility of CoCrAlY overlay and standard diffused aluminide coatings showing ductility improvements possible with appropriate overlay compositions
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240563
EISBN: 978-1-62708-251-8
..., and secondary fabrication processes. It also covers coating technology, including aluminide diffusion and overlay coatings, and addresses the advantages and disadvantages of superalloys in various applications. cast nickel-based superalloys wrought nickel alloys wrought cobalt-based superalloys cast...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys designed for high-temperature applications, generally above 540 deg C. This chapter covers the metallurgy, composition, and properties of cast and wrought superalloys. It provides information on melting, heat treating, and secondary fabrication processes. It also covers coating technology, including aluminide diffusion and overlay coatings, and addresses the advantages and disadvantages of superalloys in various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280287
EISBN: 978-1-62708-267-9
... protective coatings, including aluminide diffusion, overlay, and thermal barrier types, and how they perform in different environments based on their ability to tolerate strain. coatings corrosion resistance corrosion testing hot corrosion superalloys Overview Introduction Elevated...
Abstract
Superalloys tend to operate in environments where they are subjected to high-temperature corrosion, oxidation, and the erosive effects of hot gases. This chapter discusses the nature of these attacks and the effectiveness of various protection methods. It describes the primary forms of oxidation, the development of protective oxides, and the conditions associated with mixed gas corrosion and hot corrosion attack. It discusses oxidation and corrosion testing, the equipment used, and various ways to present the associated data. It describes the effect of gaseous oxidation on different alloys, discusses the formation of oxide scale in the presence of mixed gases, and explains how alloy composition contributes to oxide growth. The chapter discusses the underlying chemistry of hot corrosion, how to identify its effects, and how it progresses under various conditions. It also discusses protective coatings, including aluminide diffusion, overlay, and thermal barrier types, and how they perform in different environments based on their ability to tolerate strain.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050001
EISBN: 978-1-62708-432-1
... diffused into the surface of a steel substrate to form an iron aluminide diffusion coating ( Fig. 7 ). Fig. 7 Kirkendall voids observed in a Fe-Al diffusion coating. Source: Ref 3 Temperature As discussed earlier in this chapter, an increase in temperature increases the vibrational...
Abstract
A working knowledge of diffusion is necessary to understand and predict the behavior of metals and alloys during manufacturing and in certain types of service. This chapter covers the fundamentals of diffusion in solids and some of the applications in which diffusion plays a role. It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing, siliconizing, chromizing, vanadizing, and titanizing. It also discusses diffusion bonding and presents several approaches for dealing with oxide barrier problems.
Image
Published: 01 September 2022
Fig. 10 Cross sections of iron aluminide; (a) micrograph of a coated 9Cr steel substrate; (b) elemental depth profile indicating the diffused aluminide coating. Al, aluminum; Fe, iron; Si, silicon; Cr, chromium. Source: Ref 11
More
Image
Published: 01 March 2002
Fig. 13.17 Archetypical microstructures of aluminide coatings formed on a typical nickel-base superalloy. (a) Inward diffusion based on Ni 2 Al 3 , (b) same as (a) but heat treated at 1080 °C (1975 °F), (c) outward diffusion of nickel in nickel-rich NiAl, and (d) inward diffusion of aluminum
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.9781627084321
EISBN: 978-1-62708-432-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120131
EISBN: 978-1-62708-269-3
... alpha-2 alloys. Although alloy developments were tried to further increase the oxidation resistance of gamma alloys, the greatest benefits for titanium aluminides of all types seems to lie in the development of suitable protective coatings. Three general coating alloy approaches have been taken...
Abstract
This chapter discusses some of the promising developments in the use of titanium, including titanium aluminides, titanium matrix composites, superplastic forming, spray forming, nanotechnology, and rapid solidification rate processing. It also reports on efforts to increase the operating temperature range of conventional titanium alloys and reduce costs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550299
EISBN: 978-1-62708-307-2
... alloys and superalloys. Because they have slower diffusion rates than conventional titanium alloys, the titanium aluminides feature enhanced high-temperature properties such as strength retention, creep and stress rupture, and fatigue resistance. Fig. 6.3 Comparison of the creep behavior...
Abstract
Titanium aluminides are lightweight materials that have relatively high melting points and good high-temperature strength. They also tend to be stronger and lighter than conventional titanium alloys, but considerably less ductile. This chapter begins with a review of the titanium-aluminum phase diagram, focusing on the properties, compositions, and microstructures of alpha-2 Ti3Al alloys. It then describes the properties, microstructures, and compositions of orthorhombic, gamma, and near-gamma alloys as well as the processing methods and procedures normally used in their production.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080003
EISBN: 978-1-62708-304-1
... the operating temperature and/or prolong the tube life. Aluminide coatings reportedly have been used in ethylene cracking furnace tubes. At the writing of this book, it appears no commercial companies in the United States provide aluminizing coating services for ethylene furnace tubes or pipes. Another...
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230207
EISBN: 978-1-62708-351-5
... ]. The process temperature must be kept low to prevent reaction between the aluminum and boron and reduction of mechanical properties. The boron fibers or tapes will often be coated with silicon carbide to aid protection in this regard. Titanium alloys can be diffusion brazed with copper. Copper plays...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170337
EISBN: 978-1-62708-297-6
... of conventional titanium alloys and superalloys. Because they have slower diffusion rates than conventional titanium alloys, the titanium aluminides feature enhanced high-temperature properties such as strength retention, creep and stress rupture, and fatigue resistance. Properties of titanium aluminides...
Abstract
This article discusses the effect of alloying on the composition, structure, properties, and processing characteristics of ordered intermetallic compounds, including nickel aluminides, iron aluminides, and titanium aluminides. It includes several data tables along with a list of typical applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000001
EISBN: 978-1-62708-313-3
... aluminide compounds, compared to nickel aluminide, caused rapid aluminum depletion in the coating by diffusion of aluminum to the coating/substrate interface ( Ref 9 ). This determined the later development of MCrAlY coatings to be based on cobalt and nickel, such as CoCrAlY ( Ref 13 ), NiCrAlY ( Ref 14...
Abstract
Superalloys, although not strictly defined, are generally regarded as high-performance alloys based on group VIII elements (nickel, cobalt, or iron, with a high percentage of nickel) to which a multiplicity of alloying elements have been added. The defining feature of a superalloy is its combination of relatively high mechanical strength and surface stability at high operating temperatures. This chapter provides a brief history of the development of superalloys and discusses their use in the gas turbine engines.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... applications. Early work was conducted in the 1970s with boron or Borsic (a silicon carbide-coated boron fiber) reinforced aluminum for aircraft/spacecraft applications. Later work in the 1990s concentrated on SiC monofilaments in titanium ( Fig. 20.6 ) for the National Aerospace Plane. Potential applications...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350095
EISBN: 978-1-62708-315-7
... Abstract This chapter provides practical information on surface treatments that work by altering the surface chemistry of metals and alloys. It discusses the use of phosphate and chromate conversion coatings as well as anodizing, steam oxidation, diffusion coatings, and pack cementation...
Abstract
This chapter provides practical information on surface treatments that work by altering the surface chemistry of metals and alloys. It discusses the use of phosphate and chromate conversion coatings as well as anodizing, steam oxidation, diffusion coatings, and pack cementation. The chapter also covers ion implantation and laser alloying.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490415
EISBN: 978-1-62708-340-9
.... The development of new materials and coatings for industrial combustion turbines has been driven by several factors, including increased turbine inlet temperatures, the trend toward increased output and efficiency, and responses to problems encountered in service. Figure 9.2 illustrates the increase in firing...
Abstract
Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment techniques for nozzles and buckets. It also presents key information from a detailed review of the literature and the results of a survey on combustion-turbine material problems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
... been developed for specific uses, including wear resistance, chemical resistance, high reflectivity, electrical resistance, and prevention of hydrogen diffusion. Ceramic-coated metals are used for furnace components, heat treating equipment, chemical processing equipment, heat exchangers, rocket motor...
Abstract
This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld overlays, thermal spraying, and various deposition technologies.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040277
EISBN: 978-1-62708-300-3
... high Very high Very high Medium Ion nitriding, laser, PFS, PVD, TD-VC D2 Low NA NA NA High Ion nitriding, PFS, PVD, TD-VC (a) PFS, powder flame spray; PVD, physical vapor deposition; TD-VC, thermal diffusion-vanadium carbide 21.2.2 Maraging Steels Maraging steels...
Abstract
This chapter discusses the factors that affect die steel selection for hot forging, including material properties such as hardenability, heat and wear resistance, toughness, and resistance to plastic deformation and mechanical fatigue. It then describes the relative merits of various materials and the basic requirements for cold forging dies. The chapter also covers die manufacturing processes, such as high-speed and hard machining, electrodischarge machining, and hobbing, and the use of surface treatments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240607
EISBN: 978-1-62708-251-8
..., has a 1 μm (0.04 mil) thick carbon-rich coating that increases in silicon content toward its outer surface. Hot molding is a low-pressure, hot pressing process designed to fabricate SiC/Al parts at significantly lower cost than is possible with the solid-state diffusion bonding process. Because...
Abstract
Metal-matrix composites (MMCs) work at higher temperatures than their base metal counterparts and can be engineered for improved strength, stiffness, thermal conductivity, abrasion and/or creep resistance, and dimensional stability. This chapter examines the properties, compositions, and performance-cost tradeoffs of common MMCs, including aluminum-matrix composites, titanium-matrix composites, and fiber-metal laminates. It also explains how fiber-reinforced composites and laminates are made, describing both continuous and discontinuous fiber matrix production processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.9781627082679
EISBN: 978-1-62708-267-9
1