Skip Nav Destination
Close Modal
Search Results for
alloy steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2092
Search Results for alloy steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Corrosion of Carbon Steel and Low-Alloy Steel Weldments
Available to PurchaseBook: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820013
EISBN: 978-1-62708-339-3
... Abstract Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld...
Abstract
Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld and heat-affected zone (HAZ), solid-state phase transformations during welding, control of toughness in the HAZ, the effects of preheating and postweld heat treatment, and weld discontinuities. This chapter provides information on the classification of steels and the welding characteristics of each class. It describes the issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The major forms of environmentally assisted cracking affecting weldment corrosion are covered. The chapter concludes with a discussion of the effects of welding practice on weldment corrosion.
Book Chapter
Properties of Carbon Alloy Steel Welds
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930217
EISBN: 978-1-62708-359-1
.... The service properties of weldments in corrosive environments are considered and subjected to cyclic loading. The article summarizes the effects of major alloying elements in carbon and low-alloy steels on HAZ microstructure and toughness. It discusses the processes involved in controlling toughness...
Abstract
This article reviews the fundamental and specific factors that control the properties of steel weldments in both the weld metal and heat-affected zone (HAZ). The influence of welding processes, welding consumables, and welding parameters on the weldment properties is emphasized. The service properties of weldments in corrosive environments are considered and subjected to cyclic loading. The article summarizes the effects of major alloying elements in carbon and low-alloy steels on HAZ microstructure and toughness. It discusses the processes involved in controlling toughness in the HAZ and the selection of the proper filler metal. The article provides a comparison between single-pass and multipass welding and describes the effect of welding procedures on weldment properties and the effects of residual stresses on the service behavior of welded structures. It also describes the fatigue strength and fracture toughness of welded structures. The article reviews various types of corrosion of weldments.
Book Chapter
Engineering Carbon and Alloy Steel Castings
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320217
EISBN: 978-1-62708-332-4
... Abstract Steel is broadly classified as plain-carbon steels, low-alloy steels, and high-alloy steels. This chapter begins by describing microconstituents of low- and medium-carbon steel, including bainite and martensite. This is followed by a section discussing the effect of alloying elements...
Abstract
Steel is broadly classified as plain-carbon steels, low-alloy steels, and high-alloy steels. This chapter begins by describing microconstituents of low- and medium-carbon steel, including bainite and martensite. This is followed by a section discussing the effect of alloying elements on steel. Then, it provides an overview of steel casting applications. Next, the chapter reviews engineering guidelines for steel castings and feeder design. The following section provides information on feeding aids. Further, the chapter describes the elements of gating systems for steel castings. It also describes the alloys, properties, applications, and engineering details of steel. Finally, the chapter explains defects in steel castings and presents guidelines for problem solving with examples.
Image
Feeding distance for a high-alloy steel CF-8M compared with AISI 1025 steel...
Available to PurchasePublished: 01 January 2022
Fig. 12.66 Feeding distance for a high-alloy steel CF-8M compared with AISI 1025 steel; D R , diameter of the riser or feeder; FD, feeding distance. Source: Ref 27
More
Image
Grooved roll for steel mill of Cr-Mo alloy steel, 120 in. (3048 mm) roll fa...
Available to PurchasePublished: 01 December 1995
Fig. 3-5 Grooved roll for steel mill of Cr-Mo alloy steel, 120 in. (3048 mm) roll face, 45 in. (1143 mm diameter, 74,940 lb (33,985 kg). Back-up roll suspended from overhead crane weighs 95,000 lb (43,082 kg).
More
Image
Effect of cathodic protection on the fatigue performance of alloy steel in ...
Available to PurchasePublished: 01 December 2015
Fig. 28 Effect of cathodic protection on the fatigue performance of alloy steel in seawater. Tests performed on 6.4 mm (1/4 in.) diam specimens at a mean stress of 425 MPa (69 ksi)
More
Image
Lath martensite in water-quenched low-alloy steel. 2% nital etch. Original ...
Available to PurchasePublished: 01 October 2011
Fig. 9.15 Lath martensite in water-quenched low-alloy steel. 2% nital etch. Original magnification 500× Source: Ref 9.6
More
Image
Hydrogen embrittlement failure of an ISO 10.9 low-alloy steel bolt grade. (...
Available to Purchase
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 40 Hydrogen embrittlement failure of an ISO 10.9 low-alloy steel bolt grade. (a) As-received bolt. (b) Multiple initiation sites with secondary cracks evident. (c) Intergranular fracture along prior-austenite grain boundaries
More
Image
ASTM B7 low-alloy steel bolt grade. Fracture initiated along threads, with ...
Available to Purchase
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 64 ASTM B7 low-alloy steel bolt grade. Fracture initiated along threads, with typical and pronounced beach marks (i.e., cyclic fracture propagation) and transgranular fracture mode. (a) Location of bolts in pump coupling. (b) Beach marks showing asymmetrical bending with initiation
More
Image
Lath (low-carbon) martensite in SAE 8620 alloy steel (Fe, 0.2% C, 0.8% Mn, ...
Available to Purchase
in Steel Failures due to Tempering and Isothermal Heat Treatment
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 3 Lath (low-carbon) martensite in SAE 8620 alloy steel (Fe, 0.2% C, 0.8% Mn, 0.55% Ni, 0.5% Cr, 0.2% Mo) after heat treatment (954 °C, or 1750 °F, for 1 h, water quench)
More
Image
Martensite in low alloy steel ASTM A533 Cl.1 (ASME SA 533 Cl 1 or 20MnMoNi5...
Available to Purchase
in Conventional Heat Treatments—Usual Constituents and Their Formation
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 9.15 Martensite in low alloy steel ASTM A533 Cl.1 (ASME SA 533 Cl 1 or 20MnMoNi55) with C = 0.2%, Mn = 1.38%, Si = 0.25%, Ni = 0.83%, Mo = 0.49% continuously cooled at 50 °C/s (90 °F/s). Transformation start temperature: 415 °C (780 °F). Etchant: Nital 2%. Courtesy of B. Marini, CEA
More
Image
Bainite in low alloy steel ASTM A 533 Cl.1 (ASME SA 533 Cl 1 or 20MnMoNi55)...
Available to Purchase
in Conventional Heat Treatments—Usual Constituents and Their Formation
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 9.27 Bainite in low alloy steel ASTM A 533 Cl.1 (ASME SA 533 Cl 1 or 20MnMoNi55) containing C = 0.2%, Mn = 1.38%, Si = 0.25%, Ni = 0.83%, Mo = 0.49% (same steel as in Fig. 9.15 ) continuously cooled at 0.1 °C/s (0.18 °F/s). Transformation start at 590 °C (1094 °F). Etchant: nital 2
More
Image
Bainite in low alloy steel ASTM A 533 Cl.1 (ASME SA 533 Cl 1 or 20MnMoNi55)...
Available to Purchase
in Conventional Heat Treatments—Usual Constituents and Their Formation
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 9.28 Bainite in low alloy steel ASTM A 533 Cl.1 (ASME SA 533 Cl 1 or 20MnMoNi55) containing C = 0.2%, Mn = 1.38%, Si = 0.25%, Ni = 0.83%, Mo = 0.49% (same steel as in Fig. 9.15 ) continuously cooled at 2 °C/s (3.5 °F/s). Transformation start at 590 °C (1094 °F). Etchant: nital 2%. Prior
More
Image
CCT diagram for an alloy steel with 0.40% C, 1.50% Ni, 1.20% Cr, and 0.30% ...
Available to PurchasePublished: 31 December 2020
Fig. 4 CCT diagram for an alloy steel with 0.40% C, 1.50% Ni, 1.20% Cr, and 0.30% Mo, plotted as a function of bar diameter. Steel was austenitized at 850 °C (1560 °F); previous treatment: rolling, then softening at 650 °C (1200 °F). Source: Ref 4
More
Image
Published: 01 November 2012
Image
Published: 01 November 2012
Fig. 13 Room-temperature S - N curves for AISI 4340 alloy steel with various ultimate tensile strengths and with R = –1.0. Source: Ref 6
More
Image
Published: 01 November 2012
Fig. 14 S - N curves at various temperatures for AISI 4340 alloy steel with an ultimate tensile strength of 1090 MPa (158 ksi). Stress ratio R equals –1.0. Source: Ref 6
More
Image
Subsurface-origin pit in a carburized and hardened alloy steel test roller ...
Available to PurchasePublished: 01 November 2012
Fig. 17 Subsurface-origin pit in a carburized and hardened alloy steel test roller caused by fatigue in the manner shown in Fig. 16 . When this specimen was tested in essentially pure rolling, a steep-sided, irregularly shaped pit was formed, and the test was stopped. The extremely high force
More
Image
Hydrogen flaking in an alloy steel bar. (a) Polished cross-section showing ...
Available to PurchasePublished: 01 April 2013
Fig. 3 Hydrogen flaking in an alloy steel bar. (a) Polished cross-section showing cracks due to flaking. (b) Fracture surface containing hydrogen flakes. Note the reflective, faceted nature of the fracture. (c) SEM micrograph showing the intergranular appearance of the flakes in this material
More
Image
Transgranular hydrogen sulfide SCC of a low-alloy steel. Original magnifica...
Available to Purchase
in Stress-Corrosion Cracking of Carbon and Low-Alloy Steels (Yield Strengths Less Than 1241 MPa)[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 2.3 Transgranular hydrogen sulfide SCC of a low-alloy steel. Original magnification: 100×. Source: Ref 2.21
More
1