Skip Nav Destination
Close Modal
Search Results for
alloy grades
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 629 Search Results for
alloy grades
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2013
Fig. 1.14 Grades and types of HSS. HSLA, high-strength, low-alloy; IF, interstitial-free; TRIP, transformation-induced plasticity. Source: Ref 1.14
More
Image
Published: 01 January 2015
Fig. 16.24 Results of end-quench tests for four different grades of alloy steels, all containing 0.5% C. Source: Ref 16.21
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260149
EISBN: 978-1-62708-336-2
..., the extrusions with the highest extrusion speeds also had better mechanical properties and improved surface quality compared with those from billets heated directly in the normal preheating temperature range. The relative extrudability ratings of some soft- and medium-grade alloys are given in Table 1...
Abstract
This chapter discusses the extrusion characteristics of relatively soft aluminum alloys. It begins by identifying alloy designations within the class and the types of extrusions made from them. It then explains how extruded shapes and cross-sections are defined and how to analyze and assess important process variables such as runout, extrusion pressure, ram speed, and butt thickness. It also provides best practices for various operations and explains how to identify and remedy common extrusion defects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170107
EISBN: 978-1-62708-297-6
... supporting the carbide phase can be adjusted via alloy content and heat treatment to optimize the balance between abrasion resistance and impact toughness. It also describes the effect of alloying elements and inoculants on various properties and behaviors and provides information on commercial alloy grades...
Abstract
This article discusses the production, properties, and uses of high-alloy white irons. It explains how the composition and melt are controlled to produce a large volume of eutectic carbides, making these irons particularly hard and resistant to wear, and how the metallic matrix supporting the carbide phase can be adjusted via alloy content and heat treatment to optimize the balance between abrasion resistance and impact toughness. It also describes the effect of alloying elements and inoculants on various properties and behaviors and provides information on commercial alloy grades and applications.
Image
Published: 01 December 1995
Fig. 22-7 Comparison of standard HP grade, niobium-modified alloys, and micro-alloyed compositions—100,000 hour rupture lives
More
Image
Published: 01 December 1995
Fig. 6-34 Temperature dependence of elevated-temperature strength properties of cast heat-resistant high alloy grade HK-40 ( 43 )
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440125
EISBN: 978-1-62708-262-4
... Abstract This chapter discusses the fundamentals of heat treating of alloy steels. It begins with an overview of the designations of AISI-SAE grades of alloy steels, followed by a description of the purposes served by alloying elements. The effects of specific alloying elements on the heat...
Abstract
This chapter discusses the fundamentals of heat treating of alloy steels. It begins with an overview of the designations of AISI-SAE grades of alloy steels, followed by a description of the purposes served by alloying elements. The effects of specific alloying elements on the heat treatment of alloy steels and of boron on hardenability of alloy steels are then discussed. Procedures for heat treating four specific alloy steels (4037, 4037H; 4140, 4140H; 4340, 4340; and E52100) are subsequently presented. The chapter concludes with a brief account of austempering and martempering treatments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440191
EISBN: 978-1-62708-262-4
... to and including very highly alloyed grades in which the total alloy content approaches 50%. In between these extremes, practically every combination of the principal alloying elements including manganese, silicon, chromium, nickel, molybdenum, tungsten, vanadium, and cobalt has been employed. The great diversity...
Abstract
Tool steels represent a small, but very important, segment of the total production of steel. Their principal use is for tools and dies that are used in the manufacture of commodities. For the most part, the processes used for heat treating carbon and alloy steels are also used for heat treating tool steels, that is, annealing, austenitizing, tempering, and so forth. This chapter focuses on these heat treating processes of tool steels. Classification and approximate compositions and heating treating practices of some principal types of tool steels are provided. The steel types discussed include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels.
Image
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 64 ASTM B7 low-alloy steel bolt grade. Fracture initiated along threads, with typical and pronounced beach marks (i.e., cyclic fracture propagation) and transgranular fracture mode. (a) Location of bolts in pump coupling. (b) Beach marks showing asymmetrical bending with initiation
More
Image
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 40 Hydrogen embrittlement failure of an ISO 10.9 low-alloy steel bolt grade. (a) As-received bolt. (b) Multiple initiation sites with secondary cracks evident. (c) Intergranular fracture along prior-austenite grain boundaries
More
Image
Published: 01 August 1999
Fig. 18 Corrosion of aluminum alloy 1100-H14 in aqueous reagent grade formic acid solutions. Source: Ref 61
More
Image
Published: 01 September 2005
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170257
EISBN: 978-1-62708-297-6
... in the stainless steel family. Fig. 1 Composition and property linkages in the stainless steel family of alloys Designations for Stainless Steels In the United States, wrought grades of stainless steels are generally designated by the American Iron and Steel Institute (AISI) numbering system...
Abstract
This article covers the metallurgy and properties of stainless steels. It provides composition information on all types of ferritic, austenitic, martensitic, duplex, and precipitation-hardening stainless steels, including proprietary and nonstandard grades, along with corresponding property and performance data. It also discusses the effect of various alloying elements on pitting, crevice corrosion, sensitization, stress-corrosion cracking, and oxidation resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440175
EISBN: 978-1-62708-262-4
... in conjunction with chromium for most grades of stainless steels, but chromium is the key element contributing to corrosion resistance. When chromium is added to iron in relatively small amounts (1 to 3%), a modest increase in corrosion resistance of the alloy is evident. However, as the amount of chromium...
Abstract
This chapter discusses the processes involved in heat treating of stainless steels, providing information on the classification, chemical compositions, and corrosion resistance of stainless steels and the effect of specific elements on the characteristics of iron-base alloys. Five groups of stainless steels are discussed: austenitic, ferritic, martensitic, precipitation-hardening, and duplex grades. The chapter also describes the heat treatment conditions that should be maintained for processing of stainless steels.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820115
EISBN: 978-1-62708-339-3
...-chromium martensitic stainless steels. Low-Carbon, Nickel-Free Martensitic Grades The low-carbon, nickel-free martensitic grades include types 403, 410, 416, 416Se, 420, and 420F. As shown in Fig. 1 , the general-purpose alloy of this group, and indeed the most commonly used, is type 410, which...
Abstract
Martensitic stainless steels are essentially iron-chromium-carbon alloys that possess a body-centered tetragonal crystal structure (martensitic) in the hardened condition. Martensitic stainless steels are similar to plain carbon or low-alloy steels that are austenitized, hardened by quenching, and then tempered for increased ductility and toughness. This chapter provides a basic understanding of grade designations, properties, corrosion resistance, and general welding considerations of martensitic stainless steels. It also discusses the causes for hydrogen-induced cracking in martensitic stainless steels and describes sulfide stress corrosion resistance of type 410 weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120139
EISBN: 978-1-62708-269-3
... vessels, heat exchangers, and electrochemical processing equipment ASTM grade 3, UNS R50550, grade 3 Like the other grades of Ti metals and alloys, grade 3 bridges the design gap between aluminum and steel. Grade 3 has lower iron limits than grade 4 Ti. Same application areas as grade 2. Higher...
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820099
EISBN: 978-1-62708-339-3
... progress has been made in defining the correct parameters and chemistry modifications for achieving sound welds. Duplex Stainless Steel Development and Grade Designations <xref ref-type="bibr" rid="t51820099-ref1">(Ref 1)</xref> The original alloy in the duplex stainless steel family was S32900...
Abstract
Duplex stainless steels are two-phase alloys based on the iron-chromium-nickel system. Duplex stainless steels offer corrosion resistance and cost advantages over the common austenitic stainless steels. Although there are some problems with welding duplex alloys, considerable progress has been made in defining the correct parameters and chemistry modifications for achieving sound welds. This chapter provides a basic understanding of the development, grade designations, microstructure, properties, and general welding considerations of duplex stainless steel. It also discusses the influence of ferrite-austenite balance on corrosion resistance and the influence of different welding conditions on various material properties of alloy 2205 (UNS S31803).
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200298
EISBN: 978-1-62708-354-6
... a few exceptions, carbon in the cast heat-resistant alloys falls in a range from 0.3 to 0.6%, compared with 0.01 to 0.25% carbon normally associated with the wrought and cast corrosion-resistant grades. This difference in carbon results in significant changes in properties, for example, the higher...
Abstract
This chapter provides a detailed discussion on the definitions, alloy classification, alloy selection, mechanical properties, hot gas corrosion resistance, and formability of heat-resistant high alloy steels. In addition, the applications of cast heat-resistant alloys are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060291
EISBN: 978-1-62708-261-7
... There are several different designation systems that have been developed for stainless steel alloys, the most basic of which is the differentiation between the wrought compositions, the casting compositions, and the PM compositions. In the United States, wrought grades of stainless steels are generally designated...
Abstract
Steels that resist corrosive attack from normal atmospheric exposure and contain a minimum of 10.5% Cr and 50% Fe are generally classified as stainless steels. Their special qualities lie in a chromium-rich oxide surface film that quickly regrows when damaged. This chapter discusses the classification, composition, properties, treatments, and applications of austenitic, ferritic, martensitic, duplex, precipitation-hardening, powder metallurgy, and cast stainless steels. It also reviews the history of stainless steels and provides information on alloy designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000005
EISBN: 978-1-62708-312-6
... Abstract This chapter provides information on the properties and behaviors of stainless steels and stainless steel powders. It begins with a review of alloy designation systems and grades by which stainless steels are defined. It then describes the composition, metallurgy, and engineering...
Abstract
This chapter provides information on the properties and behaviors of stainless steels and stainless steel powders. It begins with a review of alloy designation systems and grades by which stainless steels are defined. It then describes the composition, metallurgy, and engineering characteristics of austenitic, ferritic, martensitic, duplex, and precipitation hardening stainless steel powders and metal injection molding grades.
1