Skip Nav Destination
Close Modal
Search Results for
alloy 201.0
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22 Search Results for
alloy 201.0
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140193
EISBN: 978-1-62708-335-5
... Rates,” Olin Corp., Jan 1973. As published in Cast Aluminum Section, Structural Alloys Handbook , Vol 3, CINDAS/Purdue University, 1994, p 24, 67 Fig. D3.2 201.0-T6 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h...
Abstract
The stress-strain curves in this data set are representative examples of the behavior of several cast alloys under tensile or compressive loads. The curves are arranged by alloy designation. Each figure cites the original source of the curve and provides pertinent background information as available. Compressive tangent modulus curves are presented for certain alloys. The effects of cyclic loading are given on several curves.
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.3 201.0-T6 aluminum casting, compressive tangent modulus curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 20 h at 154 °C (310 °F), air cooled. UNS A02010
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.6 201.0-T7 aluminum casting, compressive tangent modulus curves, various casting processes Effect of casting process is illustrated. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 5 h at 188 °C (370 °F), air cooled
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.9 201.0-T43 aluminum casting, compressive tangent modulus curves, various casting processes Effect of casting process is illustrated. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 0.5 h at 154 °C (310 °F), air
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.2 201.0-T6 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 20 h at 154 °C (310 °F), air cooled. Average
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.5 201.0-T7 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 5 h at 188 °C (370 °F), air cooled. Average
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.8 201.0-T43 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 0.5 h at 154 °C (310 °F), air cooled. Average
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.1 201.0-T6 aluminum casting, tensile stress-strain curves, various casting processes Effect of casting process. Heat treatment: 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 20 h at 154 °C (310 °F), air cooled. Average mechanical
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.4 201.0-T7 aluminum casting, tensile stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 5 h at 188 °C (370 °F), air cooled. Average mechanical
More
Image
in Stress-Strain Curves
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. D3.7 201.0-T43 aluminum casting, tensile stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 0.5 h at 154 °C (310 °F), air cooled. Average
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140069
EISBN: 978-1-62708-335-5
... castings. Alloy Temper Tension Hardness (b) , HB Shear ultimate strength, ksi Fatigue ultimate limit (c) , ksi Modulus of elasticity (d) , 10 6 psi Ultimate strength, ksi Yield strength (a) , ksi Elongation in 2 in. or 4 D , % 201.0 T6 65 55 8 130 … … … T7 68 60 6...
Abstract
This chapter reviews and provides data tables for the wide range of properties and performance characteristics that are possible with specific aluminum casting alloys and tempers. Properties and performance attributes addressed include casting and finishing characteristics; typical physical properties; typical and minimum (design) mechanical properties; fatigue strength; fracture resistance, including subcritical crack growth; and resistance to general corrosion and to stress-corrosion cracking. The chapter concludes with information on the properties of cast aluminum matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870001
EISBN: 978-1-62708-299-0
... alloys Alloy Nominal composition Product (a) Temper Tensile strength Yield strength Elongation, % Hardness (b) , HB MPa ksi MPa ksi 201.0 4.6% Cu S T4 365 53 215 31 20 95 S T6 485 70 435 63 7 135 S T7 460 67 415 60 4.5 130 355.0 5% Si, 1.3% Cu S...
Abstract
Aluminum is the second most widely used metal in the world. It is readily available, offers a wide range of properties, and can be shaped, coated, and joined using a variety of methods. This chapter discusses some of the key attributes of wrought and cast aluminum alloys and the classifications, designations, and grades of available product forms. It also explains how aluminum alloys are used in aerospace, automotive, rail, and marine applications as well as in building and construction, electrical products, manufacturing equipment, packaging, and consumer durables such as appliances and furniture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
... Abstract Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170351
EISBN: 978-1-62708-297-6
... and nominal compositions of common aluminum alloys used for casting AA number Product (a) Composition, % Cu Mg Mn Si Others 201.0 S 4.6 0.35 0.35 … 0.7 Ag, 0.25 Ti 206.0 S or P 4.6 0.25 0.35 0.10 (b) 0.22 Ti, 0.15 Fe (b) A206.0 S or P 4.6 0.25 0.35 0.05 (b) 0.22...
Abstract
This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification system by which they are defined, and the applications for which they are suited. It then explains how primary alloying elements, second-phase constituents, and impurities affect yield strength, phase formation, and grain size and how they induce structural changes that help refine certain alloys. The article also explains how primary alloying elements affect corrosion and wear behaviors and how they influence fabrication processes such as forming, forging, welding, brazing, and soldering.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140243
EISBN: 978-1-62708-335-5
... Abstract This data set contains the results of uniaxial creep rupture tests for a wide range of aluminum casting alloys conducted at temperatures from 100 to 315 deg C. In most cases, tests were made of several lots of material of each alloy and temper, the results were analyzed...
Abstract
This data set contains the results of uniaxial creep rupture tests for a wide range of aluminum casting alloys conducted at temperatures from 100 to 315 deg C. In most cases, tests were made of several lots of material of each alloy and temper, the results were analyzed, and the averages were normalized to the room-temperature typical values. For some alloys, "representative" values (raw data) rather than typical values are provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550033
EISBN: 978-1-62708-307-2
... applications for aluminum casting alloys Table 2.2 Selected applications for aluminum casting alloys Alloy Representative applications 100.0 Electrical rotors larger than 152 mm (6 in.) in diameter 201.0 Structural members; cylinder heads and pistons; gear, pump, and aerospace housings...
Abstract
This chapter provides basic engineering information on aluminum alloys with an emphasis on their use in applications where weight is a significant design factor. It discusses the advantages and limitations of various types of aluminum along with their compositions, designations, and achievable strengths. It explains how some alloys are hardened through solution strengthening and cold working, while others are strengthened by precipitation hardening. It also describes production and fabrication processes such as melting, casting, rolling, forging, forming, extruding, heat treating, and joining, and includes a section on the causes and effects of corrosion and how they are typically controlled.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.9781627083355
EISBN: 978-1-62708-335-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140021
EISBN: 978-1-62708-335-5
... Abstract This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes and their variants...
Abstract
This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes and their variants: expendable mold gravity-feed casting, nonexpendable (permanent) mold gravity feed casting, and pressure die casting. Next, the chapter describes the technologies used to produce premium engineered castings and when such castings may be relevant. The chapter concludes with descriptions of other process technologies used with castings, including metallurgical bonding, metal-matrix composites, and hot isostatic pressing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870259
EISBN: 978-1-62708-299-0
... for unalloyed and alloyed aluminum castings ( xxx .0) and ingots ( xxx .1 or xxx .2) Designation Composition, wt% Others AI, min AA No. Former Products (a) Si Fe Cu Mn Mg Cr Ni Zn Ti Sn Each Total 201.0 … S 0.10 0.15 4.0–5.2 0.20–0.50 0.15–0.55 … … … 0.15–0.35 … 0.05...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
... Abstract The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some...
Abstract
The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some of the common nonferrous alloys that can be hardened through heat treatment. The nonferrous alloys covered include aluminum alloys, cobalt alloys, copper alloys, magnesium alloys, nickel alloys, and titanium alloys.
1