1-20 of 22 Search Results for

alloy 201.0

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140193
EISBN: 978-1-62708-335-5
... Rates,” Olin Corp., Jan 1973. As published in Cast Aluminum Section, Structural Alloys Handbook , Vol 3, CINDAS/Purdue University, 1994, p 24, 67 Fig. D3.2 201.0-T6 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h...
Image
Published: 01 December 2004
Fig. D3.3 201.0-T6 aluminum casting, compressive tangent modulus curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 20 h at 154 °C (310 °F), air cooled. UNS A02010 More
Image
Published: 01 December 2004
Fig. D3.6 201.0-T7 aluminum casting, compressive tangent modulus curves, various casting processes Effect of casting process is illustrated. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 5 h at 188 °C (370 °F), air cooled More
Image
Published: 01 December 2004
Fig. D3.9 201.0-T43 aluminum casting, compressive tangent modulus curves, various casting processes Effect of casting process is illustrated. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 0.5 h at 154 °C (310 °F), air More
Image
Published: 01 December 2004
Fig. D3.2 201.0-T6 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 20 h at 154 °C (310 °F), air cooled. Average More
Image
Published: 01 December 2004
Fig. D3.5 201.0-T7 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 5 h at 188 °C (370 °F), air cooled. Average More
Image
Published: 01 December 2004
Fig. D3.8 201.0-T43 aluminum casting, compressive stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 0.5 h at 154 °C (310 °F), air cooled. Average More
Image
Published: 01 December 2004
Fig. D3.1 201.0-T6 aluminum casting, tensile stress-strain curves, various casting processes Effect of casting process. Heat treatment: 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 20 h at 154 °C (310 °F), air cooled. Average mechanical More
Image
Published: 01 December 2004
Fig. D3.4 201.0-T7 aluminum casting, tensile stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 5 h at 188 °C (370 °F), air cooled. Average mechanical More
Image
Published: 01 December 2004
Fig. D3.7 201.0-T43 aluminum casting, tensile stress-strain curves, various casting processes Effect of casting process. Heat treatment, 2 h at 504–521 °C (940–970 °F), 14 h at 529 °C (985 °F), water quench, 24 h at room temperature, plus 0.5 h at 154 °C (310 °F), air cooled. Average More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140069
EISBN: 978-1-62708-335-5
... castings. Alloy Temper Tension Hardness (b) , HB Shear ultimate strength, ksi Fatigue ultimate limit (c) , ksi Modulus of elasticity (d) , 10 6 psi Ultimate strength, ksi Yield strength (a) , ksi Elongation in 2 in. or 4 D , % 201.0 T6 65 55 8 130 … … … T7 68 60 6...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870001
EISBN: 978-1-62708-299-0
... alloys Alloy Nominal composition Product (a) Temper Tensile strength Yield strength Elongation, % Hardness (b) , HB MPa ksi MPa ksi 201.0 4.6% Cu S T4 365 53 215 31 20 95 S T6 485 70 435 63 7 135 S T7 460 67 415 60 4.5 130 355.0 5% Si, 1.3% Cu S...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
... Abstract Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170351
EISBN: 978-1-62708-297-6
... and nominal compositions of common aluminum alloys used for casting AA number Product (a) Composition, % Cu Mg Mn Si Others 201.0 S 4.6 0.35 0.35 … 0.7 Ag, 0.25 Ti 206.0 S or P 4.6 0.25 0.35 0.10 (b) 0.22 Ti, 0.15 Fe (b) A206.0 S or P 4.6 0.25 0.35 0.05 (b) 0.22...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140243
EISBN: 978-1-62708-335-5
... Abstract This data set contains the results of uniaxial creep rupture tests for a wide range of aluminum casting alloys conducted at temperatures from 100 to 315 deg C. In most cases, tests were made of several lots of material of each alloy and temper, the results were analyzed...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550033
EISBN: 978-1-62708-307-2
... applications for aluminum casting alloys Table 2.2 Selected applications for aluminum casting alloys Alloy Representative applications 100.0 Electrical rotors larger than 152 mm (6 in.) in diameter 201.0 Structural members; cylinder heads and pistons; gear, pump, and aerospace housings...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.9781627083355
EISBN: 978-1-62708-335-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140021
EISBN: 978-1-62708-335-5
... Abstract This chapter begins with information on the historical development of aluminum alloy castings. It then covers the basic factors involved in the selection of a casting process. This is followed by sections describing the various categories of casting processes and their variants...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870259
EISBN: 978-1-62708-299-0
... for unalloyed and alloyed aluminum castings ( xxx .0) and ingots ( xxx .1 or xxx .2) Designation Composition, wt% Others AI, min AA No. Former Products (a) Si Fe Cu Mn Mg Cr Ni Zn Ti Sn Each Total 201.0 … S 0.10 0.15 4.0–5.2 0.20–0.50 0.15–0.55 … … … 0.15–0.35 … 0.05...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
... Abstract The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some...