Skip Nav Destination
Close Modal
Search Results for
air-boiling process
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 198 Search Results for
air-boiling process
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 May 2018
FIG. 3.1 William Kelly, American inventor of the “air-boiling process” for making steel from cast iron.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250025
EISBN: 978-1-62708-287-7
... Abstract This chapter focuses on the evolution of steel production from 1870 to 1900. It begins with a review of the life of the inventor of the air-boiling process, William Kelly. This is followed by a discussion on how Bessemer's air-blowing process entered the steel production industry...
Abstract
This chapter focuses on the evolution of steel production from 1870 to 1900. It begins with a review of the life of the inventor of the air-boiling process, William Kelly. This is followed by a discussion on how Bessemer's air-blowing process entered the steel production industry and the development of the Kelly-Bessemer process by Alexander Holley. The chapter then discusses how Andrew Carnegie lowered the cost to produce steel, how he entered the iron and steelmaking industry, and how Captain Billy Jones joined Carnegie to expand Carnegie steel. The chapter further provides information on the great strike of 1892 at Homestead and the rapid growth in steel markets. It ends with a discussion about the factors that led Carnegie to sell his steel empire.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430001
EISBN: 978-1-62708-253-2
... . With further increase in air velocity, there is vigorous turbulence resembling bubble formation in a liquid. The solid particles within the bed start behaving as bubbles in a boiling liquid and assume the appearance of a fluid, known as a bubbling fluidized bed . Depending on the velocity of the combustion...
Abstract
Boilers are engineered systems designed to convert the chemical energy in fuel into heat to generate hot water or steam. This chapter describes boiler applications and types, including firetube boilers, watertube boilers, electric boilers, packaged boilers, fluidized bed combustion boilers, oil- and gas-fired boilers, waste heat boilers, and black liquor recovery boilers. It also describes the operation and working principle of utility or power plant boilers, covering conventional subcritical and advanced supercritical types.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430017
EISBN: 978-1-62708-253-2
... in a boiler house. Raw coal from this bunker is subsequently fed to the coal mill or pulverizer, which reduces it to a very fine powder (~200 mesh), so as to facilitate its complete combustion during the combustion process. A portion of the primary air is heated by means of heat from the flue gases...
Abstract
Coal-based thermal power plants play a major role in the welfare of many nations and the overall global economy. This chapter describes the basic equipment requirements and operating principles of thermal power plants, particularly subcritical, supercritical, and ultra-supercritical types.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310055
EISBN: 978-1-62708-326-3
... constituent, either ferrite or cementite, until 727 °C (1341 °F) is reached. The austenite of eutectoid carbon content will then transform to pearlite. Figure 4(a) shows the ferrite-and-pearlite mixture in commercially processed bar after cooling in still air from 805 °C (1480 °F); most of the ferrite has...
Abstract
The decomposition of austenite, during controlled cooling or quenching, produces a wide variety of microstructures in response to such factors as steel composition, temperature of transformation, and cooling rate. This chapter provides a detailed discussion on the isothermal transformation and continuous cooling transformation diagrams that characterize the conditions that produce the various microstructures. It discusses the mechanism and process variables of quenching of steel, explaining the factors involved in the mechanism of quenching. In addition, the chapter provides information on the causes and characteristics of residual stresses, distortion, and quench cracking of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050139
EISBN: 978-1-62708-311-9
..., with the exception of a steel workpiece that has had its heat removed by air or self-quenching. Quenching is the cooling of a workpiece at a controlled rate in order to obtain the desired microstructure and hardness. Chapter 5, “Heat Treating Basics,” in this book covers the cooling of austenite and the subsequent...
Abstract
This chapter discusses the quenching process and its adaptation to induction heat treating. It describes the three stages of quenching, the cooling characteristics of various types of quenchants, and the details of nearly a dozen compatible quenching methods. It also explains how to verify whether a quenchant can cool a workpiece fast enough to achieve martensitic transformation without cracking or distortion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480331
EISBN: 978-1-62708-318-8
... fracture toughness in seawater compared with air. Fortunately, laboratory conditions have not been observed in service. However, laboratory observations indicate the most important alloying additions that promote stress-corrosion cracking are aluminum and oxygen. Molybdenum, niobium, tantalum...
Abstract
This chapter discusses the corrosion behavior of titanium, the types of corrosion that can occur, and the effect of alloying on corrosion resistance. It explains that, due to its tenacious oxide film, titanium has excellent corrosion resistance in oxidizing environments and that the resistance can be extended into the “reducing-acid” region by adding a small amount of palladium. It describes how different grades of titanium respond to different forms of attack, including uniform, crevice, and galvanic corrosion. It also identifies applications where corrosion is often a concern.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050301
EISBN: 978-1-62708-311-9
... a part. Common quenchants are air, oil, water, and vari- ous polymers. There are three stages of quenching: vapor, boiling, and convection. R RA, RC, and so forth. Rockwell hardness test scale indicating which particular test scale is to be used. See also HRA, HRB, HR15N, and so forth. resistance. Refers...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.9781627083119
EISBN: 978-1-62708-311-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240177
EISBN: 978-1-62708-251-8
... distortion, it is often necessary to use a milder quench, such as oil or an air blast. There are three stages of heat removal during quenching in liquids, as illustrated in Fig. 11.11 : (1) vapor blanket stage, (2) nucleate boiling stage, and (3) liquid cooling stage. The vapor blanket stage...
Abstract
One of the primary advantages of steels is their ability to attain high strengths through heat treatment while still retaining some degree of ductility. Heat treatments can be used to not only harden steels but also to provide other useful combinations of properties, such as ductility, formability, and machinability. This chapter discusses various heat treatment processes, namely annealing, stress relieving, normalizing, spheroidizing, and hardening by austenitizing, quenching and tempering. It also discusses two types of interrupted quenching processes: martempering and austempering. The chapter concludes with a brief section on temper embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900241
EISBN: 978-1-62708-350-8
... as a commercial dishwasher. As long as the dishwasher can go through the cycles of wash and rinse, the drying can be accomplished by external drying methods such as a warm dry air blast. Once the wash cycle is complete, the parts should be removed by the process technician wearing lint-free cotton gloves...
Abstract
Surface cleanliness requirements depend on which nitrocarburizing process is selected for component treatment. This chapter discusses the processes involved in some of the more commonly used precleaning methods for gas ferritic nitrocarburizing and provides information on the methods used to accomplish enhanced plasma cleaning.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140133
EISBN: 978-1-62708-335-5
... aging characteristics for aluminum alloy 242.0-T4, permanent mold. Solution heat treatment: 6 h at 960 °F, quenched in 110 °F water Fig. D1.56 High-temperature aging characteristics for aluminum alloy 242.0-T4, sand cast. Cooled in still air Fig. D1.57 High-temperature aging...
Abstract
This data set presents aging response curves for a wide range of aluminum casting alloys. The aging response curves are of two types: room-temperature, or "natural," curves and artificial, or "high-temperature," curves. The curves in each group are presented in the numeric sequence of the casting alloy designation. The curves included are the results of measurements on individual lots considered representative of the respective alloys and tempers. The properties considered are yield strength, ultimate tensile strength, elongation, and Brinell hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030215
EISBN: 978-1-62708-282-2
... and/or a lack of appreciation of the true service conditions ( Ref 5 ). As an example, a type 316 stainless steel (Unified Numbering System, or UNS, S31600) pipe was considered a suitable choice for admitting steam and subsequently air into a chemical slurry in a reaction vessel; however, it experienced...
Abstract
This chapter outlines the step-by-step processes by which materials are selected in order to prevent or control corrosion and includes information on materials that are resistant to the various forms of corrosion. The various forms of corrosion covered are general (uniform) corrosion, localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120123
EISBN: 978-1-62708-269-3
.... A general comparison of corrosion resistance for titanium and some of its alloys with other metals is provided in Fig. 13.1 . Fig. 13.1 Range of corrosion resistance of metal systems Corrosion Behavior and Corrosion Resistance Gases Titanium has limited oxidation resistance in air...
Abstract
Titanium and its alloys are used chiefly for their high strength-to-weight ratio, but they also have excellent corrosion resistance, better even than stainless steels. Titanium, as the chapter explains, is protected by a tenacious oxide film that forms rapidly on exposed surfaces. The chapter discusses the factors that influence the growth and quality of this naturally passivating film, particularly the role of oxidizing and inhibiting species, temperature, and alloying elements. It also discusses the effect of different corrosion processes and environments as well as hydrogen, stress-corrosion cracking, liquid metal embrittlement, and surface treatments.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230105
EISBN: 978-1-62708-351-5
... is that native oxide films promptly regrow if the parts are exposed to air or, indeed, left in an inert atmosphere of even the highest quality for more than a few minutes. Therefore, a fluxless brazing process, not involving a reducing atmosphere, must be able to cope with a thin layer of native oxide...
Abstract
This chapter discusses joining atmospheres that are used for brazing, along with their advantages and disadvantages. It discusses the processes, advantages, and disadvantages of chemical fluxing, self-fluxing, and fluxless brazing. Information on stop-off compounds that are considered as the antithesis of fluxes is also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900053
EISBN: 978-1-62708-350-8
... at the salt/air interface and cause a breakdown of the cyanide to carbonate. This will slowly begin to affect the internal surfaces of the pot, thus reducing pot life. Monthly maintenance consists of: Weekly maintenance consists of: Daily maintenance consists of: Maintenance of the salt bath...
Abstract
This chapter presents the salts used and the process advantages of salt bath nitriding. It describes bath testing and analysis including the materials and equipment, analysis procedure, and determination of sodium carbonate and sodium cyanate for titration testing of the nitriding salt bath. The chapter explains the procedures for maintenance of the salt bath and related equipment. It also discusses safety precautions and design parameters for furnace equipment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400215
EISBN: 978-1-62708-258-7
.... Surface Preparation for Etching If etching is to be used, it should be performed soon after final polishing. With time, a freshly polished specimen will develop what is called a passive layer. If the polished specimen was exposed to air for a few hours (up to 24 h) before etching, the surface should...
Abstract
This chapter discusses the important aspects that a metallographer should understand in order to effectively reveal a microstructure. It begins by exploring etching response and how it can be a tool for revealing various microstructural features. The next part of the chapter discusses methods for revealing microstructure in the as-polished (unetched) specimen, then guidelines for selecting and using etchants when needed. The chapter discusses different types of etchants in terms of their ingredients, etching procedure, and major uses. The etchants discussed include basic etchants (nital and picral and their variations) and tint etchants for carbon and low-alloy steels and cast irons, and basic etchants for stainless steels. Finally, information is provided on different illumination methods (differential interference contrast and dark-field illumination) that can be used to highlight certain features in microstructures.
Book Chapter
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440103
EISBN: 978-1-62708-352-2
... in the process atmosphere (nitrogen) than other solders, as shown in Table 3.8 [ Dong, Schwarz, and Roth 1977 ], for the same reason. An oxide film will likewise grow rapidly on any solder preform exposed to air. To a first approximation, metallic oxide growth has a parabolic relationship with time...
Abstract
Materials used in joining, whether solders, fluxes, or atmospheres, are becoming increasingly subjected to restrictions on the grounds of health, safety, and pollution concerns. These regulations can limit the choice of materials and processes that are deemed acceptable for industrial use. The chapter addresses this issue with a focus on soldering fluxes. The chapter also describes factors related to soldering under a protective atmosphere, provides information on chemical fluxes for soldering of various metals, and discusses the processes involved in fluxless soldering processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870119
EISBN: 978-1-62708-314-0
... reinforcement contents, more uniform thicknesses, and better surface finishes. Vacuum bags can also be used for intermediate debulks during the lay-up process. If the part is cured at a slightly elevated temperature, for example less than 200 °F (95 °C), heat lamps are often used or a simple forced air...
Abstract
This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140117
EISBN: 978-1-62708-264-8
... 500 s before air or oil quenching. The sample should consist of 50% fresh lower bainite and 50% martensite that has been tempered at 340 °C (650 °F) for 500 s. In the second modified austemper (MA2) process in Table 12.3 , the mix of martensite and bainite is controlled in step 1 by controlling...
Abstract
Quenching is a critical step in the production of hardened steel. This chapter untangles some of the complexities of the quenching process and its effect on the microstructure and properties of various steels. Making extensive use of cooling curves, it sheds light on the transformations that occur at different cooling rates and the extent to which they can be changed by adjusting quench parameters. It discusses the role of quenching in martempering and austempering along with related problems such as cracking and distortion and the challenges posed by low-hardenability steels. It also discusses the use of various quenchants, including oil, polymer, and molten salt, and explains how to measure and compare their performance using a standard (ISO 9950) test.
1