Skip Nav Destination
Close Modal
Search Results for
aerodynamic time-of-flight method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-12 of 12 Search Results for
aerodynamic time-of-flight method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610001
EISBN: 978-1-62708-303-4
... was flown safely for 107 flights, at which time catastrophic failure occurred, causing destruction of the aircraft. Fig. 7 Fatigue cracking in an aircraft wing fitting for the F-111 aircraft No. 94 that crashed in 1969. (a) and (b) Location of the left wing pivot box fitting. The 22 mm (0.91...
Abstract
This chapter provides a brief review of industry’s battle with fatigue and fracture and what has been learned about the underlying failure mechanisms and their effect on product lifetime and service. It recounts some of the tragic events that led to the discovery of fatigue and brittle fracture and explains how they reshaped design philosophies, procedures, and tools. It also discusses the influence of material and manufacturing defects, operating conditions, stress concentration and intensity, temperature and pressure, and cyclic loading, all of which play a role in the onset of fatigue cracking and thus should be considered when predicting useful product life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060231
EISBN: 978-1-62708-343-0
... Cracking correlates better with use cycles than time of use Finite-element structural analysis used to estimate local strain range K t of 1.9 to 2.2; local surface strain range 2.3% max, dropping to only 0.5% at 0.5 mm (0.020 in.) below surface Transient thermal stresses at shutdown and startup...
Abstract
This chapter explains how the authors assessed the potential risks of creep-fatigue in several aerospace applications using the tools and techniques presented in earlier chapters. It begins by identifying the fatigue regimes encountered in the main engines of the Space Shuttle. It then describes the types of damage observed in engine components and the methods used to mitigate problems. It also discusses the results of analyses that led to changes in design or approach and examines fatigue-related issues in turbine engines used in commercial aircraft.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180029
EISBN: 978-1-62708-256-3
... previously. Resist the temptation to immediately assign the same root cause to failures that appear similar. If you fall into that mindset, you will give the same recommendation—which obviously did not solve the problem the first time. For example, 16 years ago I was given a seven-ply bellows made from...
Abstract
Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper service or operation, improper maintenance, improper testing, assembly errors, fabrication or manufacturing errors, and design errors. The case of the Tacoma Narrows Bridge collapse is presented to illustrate the consequence of overlooked factors, in this case, wind dynamics, and the importance of identifying root causes to prevent repeat failures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860343
EISBN: 978-1-62708-348-5
... Administration , Marshall Space Flight Center , Huntsville, Alabama . Staph H. E. , Baber B. B. , Ku P. M. , and Weatherford W. D. ( 1962 ). Survey of Lubricant Compatibility Test Methods for Missile Systems . Report No. ASD-TDR 62-190, Southwest Research Institute, San Antonio...
Abstract
This chapter discusses the compatibility problems that arise from chemical or physical interactions between liquefied gases and the common materials used in their production, storage, transportation, distribution, and use. The discussion covers the compatibility of materials with liquid oxygen and liquid fluorine. Hydrogen-environment embrittlement is unique to low-temperature hydrogen systems and is also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000001
EISBN: 978-1-62708-313-3
... of composition and processing make the cost of superalloys typically in the range of 30 to 200 times that of plain stainless steel ( Ref 2 ). Although there are a number of other material groups that can be used at high temperatures, such as ceramics and refractory metal alloys, superalloys are unsurpassed...
Abstract
Superalloys, although not strictly defined, are generally regarded as high-performance alloys based on group VIII elements (nickel, cobalt, or iron, with a high percentage of nickel) to which a multiplicity of alloying elements have been added. The defining feature of a superalloy is its combination of relatively high mechanical strength and surface stability at high operating temperatures. This chapter provides a brief history of the development of superalloys and discusses their use in the gas turbine engines.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270031
EISBN: 978-1-62708-301-0
... on April 28, 1988 is one such incident in which a section of the fuselage tore away in flight. Tiny cracks at the rivet holes had joined to form a larger crack of critical length. An insight into the evolution of corrosion pit to fatigue crack and the time for such a transition was obtained...
Abstract
This chapter discusses some of the more advanced methods and procedures used in failure analysis, including in-service material sampling, in situ microstructure analysis, and a form of punch testing that can determine the fracture toughness of any material from a tiny specimen. The chapter also covers quantitative fractography, fracture surface topography analysis, and the use of oxide dating as well as fault tree and failure modes and effects analysis (FMEA) and computational techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
... of lightweight, thin members that have very high rigidity. A beryllium column in pure buckling applications will have greater load-carrying capacity and will be lower in weight than any other metal of equal length and geometry. The elastic modulus of beryllium is nearly three times that of titanium, four times...
Abstract
Nonferrous metals are of commercial interest both as engineering materials and as alloying agents. This chapter addresses both roles, discussing the properties, processing characteristics, and applications of several categories of nonferrous metals, including light metals, corrosion-resistance alloys, superalloys, refractory metals, low-melting-point metals, reactive metals, precious metals, rare earth metals, and metalloids or semimetals. It also provides a brief summary on special-purpose materials, including uranium, vanadium, magnetic alloys, and thermocouple materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550033
EISBN: 978-1-62708-307-2
...: air compressor pistons; printing press bedplates; water jackets; crankcases. Permanent: impellers; aircraft fittings; timing gears; jet engine compressor cases 356.0 Sand: flywheel castings; automotive transmission cases; oil pans; pump bodies Permanent: machine tool parts; aircraft wheels...
Abstract
This chapter provides basic engineering information on aluminum alloys with an emphasis on their use in applications where weight is a significant design factor. It discusses the advantages and limitations of various types of aluminum along with their compositions, designations, and achievable strengths. It explains how some alloys are hardened through solution strengthening and cold working, while others are strengthened by precipitation hardening. It also describes production and fabrication processes such as melting, casting, rolling, forging, forming, extruding, heat treating, and joining, and includes a section on the causes and effects of corrosion and how they are typically controlled.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280287
EISBN: 978-1-62708-267-9
... process in superalloy applications. It is important to recognize that certain superalloys of the cobalt family also find application at body temperature, where they are used as implants in a person and require resistance to body fluids for long times. This chapter is concerned primarily with the elevated...
Abstract
Superalloys tend to operate in environments where they are subjected to high-temperature corrosion, oxidation, and the erosive effects of hot gases. This chapter discusses the nature of these attacks and the effectiveness of various protection methods. It describes the primary forms of oxidation, the development of protective oxides, and the conditions associated with mixed gas corrosion and hot corrosion attack. It discusses oxidation and corrosion testing, the equipment used, and various ways to present the associated data. It describes the effect of gaseous oxidation on different alloys, discusses the formation of oxide scale in the presence of mixed gases, and explains how alloy composition contributes to oxide growth. The chapter discusses the underlying chemistry of hot corrosion, how to identify its effects, and how it progresses under various conditions. It also discusses protective coatings, including aluminide diffusion, overlay, and thermal barrier types, and how they perform in different environments based on their ability to tolerate strain.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870375
EISBN: 978-1-62708-344-7
... S.H. , Plastic Materials and Processes , Van Nostrand Reinhold Co. , New York , 1982 , p 61 A.36 Freche J.C. and Sheflin R.W. , “Investigation of a Gas Turbine with National Bureau of Standards Body 4811 Ceramic Rotor Blades,” NACA Research Memorandum E8G20 , Lewis Flight...
Abstract
This appendix provides supplemental information on the metallurgical aspects of atomic structure, the use of dislocation theory, heat treatment processes and procedures, important engineering materials and strengthening mechanisms, and the nature of elastic, plastic, and creep strain components. It also provides information on mechanical property and fatigue testing, the use of hysteresis energy to analyze fatigue, a procedure for inverting equations to solve for dependent variables, and a method for dealing with the statistical nature of failure.