Skip Nav Destination
Close Modal
Search Results for
Weld decay
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 80
Search Results for Weld decay
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2015
Fig. 15 Diagram of weld decay (sensitization) in an austenitic stainless steel weldment. Source: Ref 3
More
Image
Published: 01 July 1997
Image
Published: 01 December 2006
Image
Published: 01 December 2006
Fig. 4 Weld decay (sensitization) in austenitic stainless steel and methods for its prevention. Panels of four different 300-series stainless steels were joined by welding and exposed to hot HNO 3 + HF solution. The weld decay evident in the type 304 panel was prevented in the other panels
More
Image
Published: 31 December 2020
Fig. 10 Weld decay and methods for its prevention. The four different panels were joined by welding and then exposed to a hot solution of HNO 3 /HF. Weld decay, such as that shown in the type 304 steel (bottom right), is prevented by reduction of the carbon content (type 304L, top left
More
Image
in Effects of Metallurgical Variables on the Corrosion of Stainless Steels[1]
> Corrosion in the Petrochemical Industry
Published: 01 December 2015
Fig. 3 Weld decay and methods for its prevention. The four different panels were joined by welding and then exposed to a hot solution of HNO 3 /HF. Weld decay, such as that shown in the type 304 steel (bottom right), is prevented by reduction of the carbon content (type 304L, top left
More
Image
Published: 01 December 2015
Fig. 16 Weld decay and methods for its prevention. The four different panels were joined by welding and then exposed to a hot solution of HNO 3 /HF. Weld decay, such as that shown for the type 304 steel (bottom right), is prevented by reduction of the carbon content (type 304L, top left
More
Image
Published: 01 January 2000
Fig. 45 Intergranular corrosion of sensitized HAZ grain boundaries and methods for its prevention. The four different panels were joined by welding and then exposed to a hot solution of nitric-hydrofluoric acid (HNO 3 -HF). Weld decay, such as that shown in the type 304 steel (bottom right
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930189
EISBN: 978-1-62708-359-1
... is known to be highly anodic to A285 base metal in a seawater environment ( Ref 7 ). It is important to select a suitable filler metal when an application involves a harsh environment. Weld Decay of Stainless Steel During welding of stainless steels, local sensitized zones (i.e., regions susceptible...
Abstract
This article describes some of the general characteristics associated with the corrosion of weldments. The role of macrocompositional and microcompositional variations, a feature common to weldments, is emphasized in this article to bring out differences that need to be realized in comparing corrosion of weldments to that of wrought materials. The article discusses the most important methods available to minimize corrosion in weldments.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820001
EISBN: 978-1-62708-339-3
... involves a harsh environment. Weld Decay of Stainless Steel During welding of stainless steels, local sensitized zones (i.e., regions susceptible to corrosion) often develop. Sensitization is due to the formation of chromium carbide along grain boundaries, resulting in depletion of chromium...
Abstract
Corrosion failures of welds can occur even when the proper base metal and filler metal have been selected, industry codes and standards have been followed, and welds have been deposited that possess full weld penetration and have proper shape and contour. This chapter describes some of the general characteristics associated with the corrosion of weldments. The role of macro- and microcompositional variations, a feature common to weldments, is emphasized in this chapter to bring out differences that need to be realized in comparing the corrosion of weldments to that of wrought materials. The discussion covers the factors influencing corrosion of weldments, microstructural features of weld microstructures, various forms of weld corrosion, and welding practice to minimize corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030096
EISBN: 978-1-62708-282-2
... corrosion problem in stainless steels is weld decay (sensitization) caused by carbide precipitation in the weld HAZ. Sensitization occurs in a zone subject to a critical thermal cycle in which chromium-rich carbides precipitate and in which chromium diffusion is much slower than that of carbon. The carbides...
Abstract
This chapter discusses various factors that affect corrosion of stainless steel weldments. It begins by providing an overview of the metallurgical factors associated with welding. This is followed by a discussion on preferential attack associated with weld metal precipitates in austenitic stainless steels as well as several forms of corrosion associated with welding. The effects of gas-tungsten arc weld shielding gas composition and heat-tint oxides on corrosion resistance are then covered. Microbiological corrosion of butt welds in water tanks is also illustrated. In addition, the chapter provides information on corrosion of ferritic and duplex stainless steel weldments.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820169
EISBN: 978-1-62708-339-3
...-hardenable nickel-chromium alloy is welded to a nonstabilized austenitic stainless steel, exposure of the weldment to the aging treatment for the nickel-chromium alloy would sensitize the stainless steel and decrease its resistance to intergranular corrosion (weld decay). One solution is to use...
Abstract
Many factors must be considered when welding dissimilar metals, and adequate procedures for the various metals and sizes of interest for a specific application must be developed and qualified. Most combinations of dissimilar metals can be joined by solid-state welding (diffusion welding, explosion welding, friction welding, or ultrasonic welding), brazing, or soldering where alloying between the metals is normally insignificant. This chapter describes the factors influencing joint integrity and discusses the corrosion behavior of dissimilar metal weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030112
EISBN: 978-1-62708-282-2
... alloy B has been used since approximately 1929 and has suffered from one significant limitation: weld decay. The welded structure has shown high susceptibility to knife-line attack adjacent to the weld metal and to HAZ attack at some distance from the weld. The former has been attributed...
Abstract
This chapter discusses some of the metallurgical factors that affect corrosion of weldments and describes a few considerations for selected nonferrous alloy systems: aluminum, titanium, tantalum, and nickel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930365
EISBN: 978-1-62708-359-1
..., 302) … … … … Arc welding not recommended. Flash welding possible. Austenitic stainless steel types: 303, 304 L, 304, 305, 309, 310, 314, 316, 321, 347 Not recommended 950–1150 If undertaken—or stress relieve below 650 °C (to avoid weld decay). Excellent weldability. Filler materials...
Abstract
This appendix provides reference tables listing weldability of cast irons, steels, and nonferrous metals. A process selection table for arc welding carbon steels is included, and recommended preheat and interpass temperature tables are also presented. This appendix includes information on qualification codes and standards.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.9781627083591
EISBN: 978-1-62708-359-1
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820043
EISBN: 978-1-62708-339-3
... (weld decay) caused by carbide precipitation in the weld HAZ. Sensitized structures are susceptible in intergranular corrosion. Mechanism At temperatures above approximately 1035 °C (1900 °F), chromium carbides are completely dissolved in austenitic stainless steels. However, when these steels...
Abstract
Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This chapter provides a basic understanding of grade designations, properties, and welding considerations of austenitic stainless steels. It also discusses general types of corrosive attack and their effects on service integrity as well as detection and control measures. The five corrosive attack mechanisms covered are intergranular corrosion, preferential attack associated with weld metal precipitates, pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030062
EISBN: 978-1-62708-282-2
... stainless steels. It also shows that the sensitized zone in these steels is somewhat removed from the weld metal. Fig. 3 Weld decay and methods for its prevention. The four different panels were joined by welding and then exposed to a hot solution of HNO 3 /HF. Weld decay, such as that shown...
Abstract
This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison of corrosion behavior between cast and wrought product forms.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
... but of differentmicrostructure. Each of these areas responds differently to the external corrosive environment. Nickel-Molybdenum Alloys As discussed earlier in this chapter, alloy B has been used since the 1920s and has suffered from one significant limitation: weld decay. The welded structure has shown high...
Abstract
Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis in this chapter is on the CRAs and in particular nickel-chromium-molybdenum alloys. The chapter provides a basic understanding of general welding considerations and describes the welding metallurgy of molybdenum-containing CRAs and of nickel-copper, nickel-chromium, and nickel-chromium-iron CRAs. It discusses the corrosion behavior of nickel-molybdenum alloys and nickel-chromium-molybdenum alloys. Information on the phase stability and corrosion behavior of nickel-base alloys is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720411
EISBN: 978-1-62708-305-8
... Abstract Weldments made by the various welding processes may contain discontinuities that are characteristic of that process. This chapter discusses the different welding processes as well as the discontinuities typical of each process. It provides a detailed discussion on the methods...
Abstract
Weldments made by the various welding processes may contain discontinuities that are characteristic of that process. This chapter discusses the different welding processes as well as the discontinuities typical of each process. It provides a detailed discussion on the methods of nondestructive inspection of weldments including visual inspection, liquid penetrant inspection, magnetic particle inspection, radiographic inspection, ultrasonic inspection, leak testing, and eddy current and electric current perturbation inspection. The chapter also describes the properties of brazing filler metals and the types of flaws exhibited by brazed joints.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930085
EISBN: 978-1-62708-359-1
... Abstract Welded joints in any component or structure require a thorough inspection. The role of nondestructive evaluation (NDE) in the inspection of welds is very important, and the technology has become highly developed as a result. This article describes the applications, methods, evaluation...
Abstract
Welded joints in any component or structure require a thorough inspection. The role of nondestructive evaluation (NDE) in the inspection of welds is very important, and the technology has become highly developed as a result. This article describes the applications, methods, evaluation procedures, performance, and limitations of NDE. It provides information on the training and certification of NDE operators, evaluation of test results, and guidance to method selection. Typical examples of various NDE methods for welds are also described.
1