Skip Nav Destination
Close Modal
Search Results for
Weibull analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 28 Search Results for
Weibull analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 September 2005
Image
Published: 01 December 2004
Fig. 6.3 Weibull analysis of fatigue data for A357.0-T6 aluminum alloy castings with and without Densal II HIP. Source: Ref 6
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110666
EISBN: 978-1-62708-247-1
... Abstract This chapter surveys both basic quality and basic reliability concepts as an introduction to the failure analysis professional. It begins with a section describing the distinction between quality and reliability and moves on to provide an overview of the concept of experiment design...
Abstract
This chapter surveys both basic quality and basic reliability concepts as an introduction to the failure analysis professional. It begins with a section describing the distinction between quality and reliability and moves on to provide an overview of the concept of experiment design along with an example. The chapter then discusses the purposes of reliability engineering and introduces four basic statistical distribution functions useful in reliability engineering, namely normal, lognormal, exponential, and Weibull. It also provides information on three fundamental acceleration models used by reliability engineers: Arrhenius, Eyring, and power law models. The chapter concludes with information on failure rates and mechanisms and the two techniques for uncovering reliability issues, namely burn-in and outlier screening.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250311
EISBN: 978-1-62708-345-4
... in diameter) on specimen. (d) Change in diameter, in. × 10 -5 /cycles × 10 6 Fig. 4 Weibull analysis with RCF test data Single-Tooth Fatigue (STF) Test The STF test is used to generate a statistically significant quantity of bending fatigue data at a comparatively low price. Teeth...
Abstract
Mechanical tests are performed to evaluate the durability of gears under load. The chapter first discusses the processes involved in the computations of stress for test parameters of gear. Next, the chapter reviews the four areas of specimen characterization of a test program, namely dimensional, surface finish texture, metallurgical, and residual stress. The following section presents the tests that simulate gear action, namely the rolling contact fatigue test, the single-tooth fatigue test, the single-tooth single-overload test, and the single-tooth impact test. Finally, the chapter describes the test procedures for surface durability (pitting), root strength (bending), and scoring (or scuffing) testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290193
EISBN: 978-1-62708-319-5
... strength of 13 GPa (1.9 × 10 6 psi), while the 12 mm (0.5 in.) diameter iron tensile bar fails at 230 MPa (33 ksi). The size effect occurs because small samples limit defects; the smaller the sample size, the lower the chance of including strength-limiting defects. This idea is presented in the Weibull...
Abstract
When a material is sintered and evaluated for performance, the primary focus is on mechanical properties. This chapter discusses structural properties for representative materials. Some guidelines are presented on the types of tests and how property values depend on the testing procedure. Mechanical hardness and strength tabulations are provided to document sintered properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140055
EISBN: 978-1-62708-335-5
... by HIP in fatigue strength or endurance limit as compared to unHIPped material from same lot. Source: Ref 4 Fig. 6.3 Weibull analysis of fatigue data for A357.0-T6 aluminum alloy castings with and without Densal II HIP. Source: Ref 6 Fig. 6.4 Fatigue S - N curves for VCR/PCR...
Abstract
Hot isostatic pressing (HIP) is a process refinement available to address internal porosity in castings. The HIP process may be used, in particular, for applications requiring very high quality and performance. This chapter discusses the principles, advantages, and disadvantages of HIP. It describes the effect of HIP on tensile properties and on the fatigue performance of aluminum alloy castings. In addition, the chapter discusses the processes involved in radiographic inspection of HIP-processed castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
... zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process. brazing ceramic processing diffusion bonding structural ceramics toughened ceramics weibull analysis...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780157
EISBN: 978-1-62708-268-6
... Abstract Failure analysis can sometimes involve considerations of statistics and probability. This chapter reviews some of the basic types of statistical distributions in order to understand some basic principles in their use. The main focus is on the uses of the normal distribution, which...
Abstract
Failure analysis can sometimes involve considerations of statistics and probability. This chapter reviews some of the basic types of statistical distributions in order to understand some basic principles in their use. The main focus is on the uses of the normal distribution, which is the most commonly used statistical distribution. The chapter also includes a section discussing the reliability and probability of passing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870157
EISBN: 978-1-62708-344-7
..., the life comparison with axial data is much more favorable. However, because of the difficulty of performing the integrations involved in the bending case, general closed-form solutions weren’t presented. Each material and geometry had been treated numerically. In Ref 7.2 , the analysis was extended...
Abstract
This chapter deals with the effects of fatigue in rotating shafts subjected to elastic and plastic strains associated with bending stresses. It begins with a review of the basic approach to treating low-cycle fatigue in bending, explaining that the assumption that stress is proportional to strain is incorrect due to plastic flow, causing considerable discrepancy between measured and calculated stresses. Data plots of the axial and bending fatigue characteristics of a 4130 steel help illustrate the problem. A closed-form solution is then presented and used to analyze the effects of flexural bending on solid as well as hollow rectangular and round bars. The chapter also discusses the difference in the treatment of a rotating shaft in which all surface elements undergo the same stress and strain and a nonrotating shaft in which a few surface elements carry most of the load. The difference, as explained, is due to the volumetric effect of stress in fatigue.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... on identification of the actual flaw types using fractography ( Ref 1 , 2 ). This is generally a time-consuming and sometimes very difficult task, especially if scanning electron microscopy is required. An alternative although less deterministic approach is to use data-analysis procedures suitable for separating...
Abstract
This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests on advanced monolithic ceramics and CMCs. These include effects of flaw type and location on tensile tests, separation of flaw populations, design strength and scale effects, and lifetime predictions and environmental effects. The chapter discusses the advantages, problems, and complications of four basic categories of tensile testing techniques as applied to ceramics and CMCs. These categories are true direct uniaxial tensile tests at ambient temperatures, indirect tensile tests, tests where failure is presumed to result from tensile stresses, and high-temperature tensile tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870375
EISBN: 978-1-62708-344-7
... dislocation theory elasticity engineering ceramics engineering polymers fatigue test multiaxiality plastic deformation plasticity strengthening treatments Weibull analysis Preface This book is mainly about fatigue. But limiting the discussion to this subject introduces some gaps...
Abstract
This appendix provides supplemental information on the metallurgical aspects of atomic structure, the use of dislocation theory, heat treatment processes and procedures, important engineering materials and strengthening mechanisms, and the nature of elastic, plastic, and creep strain components. It also provides information on mechanical property and fatigue testing, the use of hysteresis energy to analyze fatigue, a procedure for inverting equations to solve for dependent variables, and a method for dealing with the statistical nature of failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030001
EISBN: 978-1-62708-418-5
... is better and/or comparable to some conventional alloys, e.g., steels and titanium alloys, with a fatigue-endurance limit ranging from 270 to 472 MPa (39.16 to 68.46 ksi). They used the Weibull mixture model to predict the fatigue data, as shown in Eq 1.3 and 1.4 ( Ref 56 ): (Eq 1.3) f ( N...
Abstract
This chapter summarizes the progress that has been made in the study of high-entropy alloy (HEA) systems and the process-structure-property relationships that define them. It describes the various ways HEAs can be strengthened and explains how alloying elements influence tensile and yield strength, fracture toughness, and fracture strength. It discusses the stages of plastic deformation in HEAs and the role of dislocations and twinning in the evolution of microstructure. It reviews some of the work that has been done on fatigue behaviors and the methods developed to assess fatigue performance. It discusses the influence of defects on fatigue life, the effect of temperature and grain size on fatigue-crack propagation, and the role of nanotwinning in crack-growth retardation. It describes the methods used to produce HEAs in bulk and powder form and to apply them as protective coatings and films. It also identifies potential applications based on properties such as strength, hardness, density, wear resistance, high-temperature stability, and biocompatibility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870179
EISBN: 978-1-62708-344-7
... be expected because r is a measure of how large a volume is under the high stress. The volumetric effect is discussed more completely in the Appendix, “ Selected Relevant Background Information ,” in connection with the Weibull analysis. Here it is seen that it was Neuber’s way of taking size effect...
Abstract
This chapter describes how notches affect the load-carrying capacity and fatigue life of materials under cyclic loads. It explains that stresses and strains can be three to four times higher in the vicinity of a notch, greatly accelerating fatigue damage. It discusses the use of stress concentration factors and how they are determined for the general case and for specific geometries, materials, and surface conditions. The chapter covers both elastic and plastic fatigue behaviors as well as a wide range of methods. It also explains how small nuances in loading can introduce tensile or compressive stress in the hysteresis loops causing variations in fatigue life as large as 50:1 depending on where the transition in fatigue behavior occurs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290261
EISBN: 978-1-62708-319-5
... utilization; inventory control, maintenance schedules, production scheduling, tool path analysis, and cost analysis may be included in this category. critical loading. The maximum volume fraction of solid particles that can be incorporated in a polymer binder without forming pores while still allowing ow...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.9781627083195
EISBN: 978-1-62708-319-5
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870001
EISBN: 978-1-62708-344-7
..., involving successive cycling of varying amplitude is treated next. Specific rules for material behavior are first provided without detailed proof, so an analyst can proceed expeditiously without being burdened by too many theoretical considerations. However, more detailed analysis is provided later...
Abstract
This chapter gives a brief overview of the role of fatigue in component failures. It presents examples of fatigue failures along with statistics on the causes and costs of fatigue damage in various industries. It also includes a chapter-by-chapter summary of the content in the book, noting that the book deals primarily with fatigue at temperatures below the creep range with high-temperature fatigue being treated in a companion publication.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
... inelastic strain imposed. Analysis of such a loop becomes complicated if the time-dependent inelastic strain is to be separated from the total inelastic strain. In order to minimize the time-dependency effect, it is common to conduct cyclic tests at a high strain rate, but this approach introduces other...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290169
EISBN: 978-1-62708-319-5
... within the microstructure. The sintered grain size distribution is characterized by the median size, as plotted for magnesia in Fig. 8.15 . The grain size is normalized to the median size. The symbols are experimental measures, while the solid line corresponds to a Weibull fit. If F ( G...
Abstract
After shaping and first-stage binder removal, the component (with remaining backbone binder) is heated to the sintering temperature. Further heating induces densification, evident as dimensional shrinkage, pore rounding, and improved strength. This chapter begins with a discussion on the events that are contributing to sintering densification, followed by a discussion on the driving forces, such as surface energy, and high-temperature atomic motion as well as the factors affecting these processes. The process of microstructure evolution in sintering is then described, followed by a discussion on the tools used for measuring bulk properties to monitor sintering and density. The effects of key parameters, such as particle size, oxygen content, sintering atmosphere, and peak temperature, on the sintered properties are discussed. Further, the chapter covers sintering cycles and sintering practices adopted as well as provides information on dimensional control and related concerns of sintering. Cost issues associated with sintering are finally covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870351
EISBN: 978-1-62708-314-0
... analysis. composites fracture toughness testing peel testing shear testing specimen preparation tension testing WHEN HIGH-STRENGTH composites were first developed in the 1960s, the same test methods for homogeneous and isotropic metals were initially used; however, since composite materials...
Abstract
This chapter discusses composite testing procedures, including tension, compression, shear, flexure, and fracture toughness testing as well as adhesive shear, peel, and honeycomb flatwise tension testing. It also discusses specimen preparation, environmental conditioning, and data analysis.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540047
EISBN: 978-1-62708-309-6
..., most engineering materials exhibit some kind of mixed deformation behavior that is either a combination of the Hooke solid and the St. Venant solid, or the Hooke solid and the Newtonian liquid. Chapter 1 also introduced stress analysis, which is a basic step in determining design allowable loads...
Abstract
This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep and stress rupture, stress corrosion, and hydrogen embrittlement.
1