Skip Nav Destination
Close Modal
Search Results for
Vessels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 425 Search Results for
Vessels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220475
EISBN: 978-1-62708-259-4
...Abstract Abstract This chapter discusses the properties and compositions of steels used in pressure vessels, piping, boilers, rebar, and other structural applications. It covers fine-grained steels, quenched and tempered steels, and controlled rolled (thermomechanical treatment) steels. It also...
Abstract
This chapter discusses the properties and compositions of steels used in pressure vessels, piping, boilers, rebar, and other structural applications. It covers fine-grained steels, quenched and tempered steels, and controlled rolled (thermomechanical treatment) steels. It also compares and contrasts steels used for concrete reinforcement and in various types of pressure vessels, and presents a metallographic study of the effects of welding on the micro and macrostructure of steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860019
EISBN: 978-1-62708-338-6
...Abstract Abstract This chapter outlines a methodology for the design of cylindrical pressure vessels, with emphasis on the establishment of winding patterns and the interaction between the real fiber bed geometry (finite roving dimensions) and the theoretical one. To highlight the materials...
Abstract
This chapter outlines a methodology for the design of cylindrical pressure vessels, with emphasis on the establishment of winding patterns and the interaction between the real fiber bed geometry (finite roving dimensions) and the theoretical one. To highlight the materials-shape/pattern-roving interaction, an outline of the basic principles of pressure vessel design is provided. After a short section on laminate thickness approximation techniques (essential for establishing a range of acceptable roving dimensions), the chapter concludes with an example demonstrating the methodology from an initial set of design parameters up to the final stage, including patterns, roving dimensions, and production time minimization.
Image
Published: 01 January 2000
Fig. 1 Poor (a) and good (b) designs for vessels used for mixing concentrated and dilute solutions. Poor design causes concentration and uneven mixing of incoming chemicals along the vessel wall (circled areas). Good design allows concentrated solutions to mix away from vessel walls.
More
Image
Published: 01 January 2000
Fig. 4 Poor (a) and good (b) designs for vessels holding both liquid and vapor phases. Sharp corners and protruding outlet end in (a) allow hot gases to become trapped in the vapor space. This is avoided in (b) by using rounded corners and mounting the vessel outlet pipe flush.
More
Image
Published: 01 September 2011
Fig. 2.9 Three-spindle, four-axes winder to produce pressure vessels
More
Image
Published: 01 September 2011
Fig. 7.7 Pressure vessels wound with void-free techniques. ERINT, Extended Range Interceptor
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860115
EISBN: 978-1-62708-338-6
...Abstract Abstract The necessity of developing the lightest-weight structures with sufficient strength was the driving factor for the development of filament-wound composite pressure vessels. This chapter presents a brief history of the development of rocket motor cases (RMCs), followed...
Abstract
The necessity of developing the lightest-weight structures with sufficient strength was the driving factor for the development of filament-wound composite pressure vessels. This chapter presents a brief history of the development of rocket motor cases (RMCs), followed by a comparison of the advantages of composites over metals for RMCs. A discussion on a typical design, analysis, and manufacturing operation follows. The chapter introduces the basic design approach and shows some sizing techniques along with example calculations. It discusses the processes involved in the testing of the composite pressure vessel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490329
EISBN: 978-1-62708-340-9
...Abstract Abstract This chapter covers the failure modes and mechanisms of concern in hydroprocessing reactor vessels and the methods used to assess lifetime and performance. It begins with a review of the materials used in the construction of pressure-vessel shells, the challenges they face...
Abstract
This chapter covers the failure modes and mechanisms of concern in hydroprocessing reactor vessels and the methods used to assess lifetime and performance. It begins with a review of the materials used in the construction of pressure-vessel shells, the challenges they face, and the factors that determine shell integrity. The discussion addresses key properties and design parameters including allowable stress, fracture toughness, the effect of microstructure and composition on embrittlement, high-temperature creep, and subcritical crack growth. The chapter also provides information on the factors that affect cladding integrity and ends with a section on life-assessment techniques.
Image
Published: 01 January 2000
Fig. 53 Stress-corrosion failure of an Apollo Ti-6Al-4V RCS pressure vessel due to nitrogen tetroxide. (a) Failed vessel after exposure to pressurized N 2 O 4 for 34 h. (b) Cross section through typical stress-corrosion cracks. 250×
More
Image
Published: 01 January 2000
Fig. 13 Chloride SCC in a type 304 stainless-steel vessel after a new flange connection was welded into place
More
Image
Published: 01 October 2011
Fig. 4.1 A bronze Kuei handled vessel on a rectangular plinth (34.30 × 44.50 cm) cast in China in the 7th century B.C. Courtesy of ©The Cleveland Museum of Art, Leonard C. Hanna, Jr. Fund, 1974.73
More
Image
Published: 30 November 2013
Fig. 8 Elastic stress distribution: thin-wall pressure vessel. (a) Longitudinal section. (b) Cross section
More
Image
Published: 30 November 2013
Fig. 7 Hydrotest failure of a carbon steel pressure vessel. (a) Schematic of pressure vessel that failed during hydrotesting showing the location of the origin of the failure and the path of the propagating fracture. A and B indicate sections of the vessel selected for examination. (b) Inside
More
Image
in Failure Analysis of Stress-Corrosion Cracking[1]
> Stress-Corrosion CrackingMaterials Performance and Evaluation
Published: 01 January 2017
Fig. 18.9 Stress-corrosion cracking failure of a batch reactor vessel. (a) Cross-sectional view of jacketed reactor. (b) Metallographic section through two NaOH-enriched pits. 2% nital etch. Original magnification: 50×. (c) Intergranular cracking initiated from pit penetrations. 2% nital etch
More
Image
Published: 01 October 2012
Fig. 8.38 Principle of autoclave curing. The autoclave vessel is pressurized with gas, usually nitrogen or carbon dioxide, at some pressure (e.g., 690 kPa, or 100 psi). Because the laminate inside the vacuum bag is either at atmospheric pressure or has an applied vacuum, there exists a pressure
More
Image
Published: 01 December 1989
Fig. 2.12. Reference fracture-toughness curve for nuclear-reactor pressure-vessel steels as per ASME Boiler and Pressure Vessel Code, Section III, Appendix G ( Ref 45 ).
More
Image
Published: 01 December 1989
Fig. 3.7. Use of ASME Boiler and Pressure Vessel Code criteria to establish the allowable stress for a 2¼Cr-1Mo steel ( Ref 46 ).
More
Image
in Life Prediction for Boiler Components
> Damage Mechanisms and Life Assessment of High-Temperature Components
Published: 01 December 1989
Fig. 5.2. Effect of temperature on ASME Boiler and Pressure Vessel Code allowable stress for several grades of steel tubing.
More
Image
Published: 01 November 2013
Fig. 12 Schematic of an argon oxygen decarburization vessel. Source: Ref 12
More