Skip Nav Destination
Close Modal
Search Results for
UNS S32100
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 20 Search Results for
UNS S32100
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310279
EISBN: 978-1-62708-286-0
... 16.5 14.6 480 0.74 321 S32100 7.92 193 16.6 16.3 500 0.72 904L N08904 7.95 190 15.3 13.2 460 0.95 AL6-XN © N08367 8.06 200 15.3 11.8 474 0.89 409 S40920 7.76 200 10.5 25.0 477 0.60 430 S43000 7.70 200 10.3 23.9 460 0.60 439 S43035 7.70 200...
Abstract
This appendix contains tables listing the physical and mechanical properties of stainless steel engineering alloys. The physical properties covered are density, modulus of elasticity, coefficient of thermal expansion, thermal conductivity, specific heat, and electrical resistivity. The mechanical properties listed include yield strength, tensile strength, elongation and hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310225
EISBN: 978-1-62708-286-0
..., formability T439HP (UNS S43035, dual-stabilized 439) 18CrCb (DIN 1.4509, 18CrCb) 441 (DIN 1.4509) 304/304L/304H (UNS S30400, S30403, S30409) 321 (UNS S32100) 309S (UNS S30908) 310S (UNS S31008) 332Mo (S35125) 600 (N06600) 601 (N06601) 625 (N06625) Front pipe 600–800...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440175
EISBN: 978-1-62708-262-4
...–4.0 Mo S31703 317L 0.03 2.0 1.00 18.0–20.0 11.0–15.0 0.045 0.03 3.0–4.0 Mo S32100 321 0.08 2.0 1.00 17.0–19.0 9.0–12.0 0.045 0.03 5 × %C min Ti S34700 347 0.08 2.0 1.00 17.0–19.0 9.0–13.0 0.045 0.03 10 × %C min Nb S34800 348 0.08 2.0 1.00 17.0–19.0 9.0–13.0...
Abstract
This chapter discusses the processes involved in heat treating of stainless steels, providing information on the classification, chemical compositions, and corrosion resistance of stainless steels and the effect of specific elements on the characteristics of iron-base alloys. Five groups of stainless steels are discussed: austenitic, ferritic, martensitic, precipitation-hardening, and duplex grades. The chapter also describes the heat treatment conditions that should be maintained for processing of stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310247
EISBN: 978-1-62708-286-0
... Nitronic 33 PREN(a) 28 28 38 39 54 38 49 36 46 47 49 39 UNS S30100 S30153 S30200 S30215 S30300 S30400 S30403 S30409 S30415 S30453 S30500 S30800 S30815 S30900 S31000 S31008 S31254 S31266 S31600 S31603 S31609 S31635 S31700 S31703 S31725 S31726 S31753 S32100 S32109 S32200 S32654 S33000 S33400 S34565 S34700...
Abstract
This chapter discusses various factors pertinent to the prevention of corrosion in alloys for petroleum applications and reviews the selection of stainless steels for petroleum applications, including oil country tubular goods, line pipe, offshore platforms, liquefied natural gas vessels, and refinery equipment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170257
EISBN: 978-1-62708-297-6
... 2.0 1.00 16.0–18.0 10.0–14.0 0.045 0.03 2.0–3.0 Mo; 0.10–0.16 N S31700 317 0.08 2.0 1.00 18.0–20.0 11.0–15.0 0.045 0.03 3.0–4.0 Mo S31703 317L 0.03 2.0 1.00 18.0–20.0 11.0–15.0 0.045 0.03 3.0–4.0 Mo S32100 321 0.08 2.0 1.00 17.0–19.0 9.0–12.0 0.045 0.03 5 × %C...
Abstract
This article covers the metallurgy and properties of stainless steels. It provides composition information on all types of ferritic, austenitic, martensitic, duplex, and precipitation-hardening stainless steels, including proprietary and nonstandard grades, along with corresponding property and performance data. It also discusses the effect of various alloying elements on pitting, crevice corrosion, sensitization, stress-corrosion cracking, and oxidation resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310269
EISBN: 978-1-62708-286-0
... 0.10–0.22 18.0–21.0 11.0–15.0 3.0–4.0 2.0 1.00 0.045 0.030 0.030 max P … 317LM S31725 0.03 0.10 18.0–20.0 13.5–17.5 4.0–5.0 2.0 1.00 0.045 0.030 … … 317LMN S31726 0.03 0.10–0.20 17.0–20.0 13.5–17.5 4.0–5.0 2.0 0.75 0.045 0.030 … … 321 S32100 0.08 0.10 17.0...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060291
EISBN: 978-1-62708-261-7
... tubing S30403 0.02 0.09 18.3 8.1 0.3 1.8 0.45 0.013 S 0.030 P 0.4 Ci 305 S30500 0.05 0.02 18.8 12.1 0.2 0.8 0.60 0.001 S 0.02 P 0.2 Cu 321 S32100 0.05 0.01 17.7 9.1 0.03 1.0 0.45 0.001 S 0.03 P 0.4 Ti 316L S31603 0.02 0.0 16.4 10.5 2.1 1.8 0.50 0.010 S...
Abstract
Steels that resist corrosive attack from normal atmospheric exposure and contain a minimum of 10.5% Cr and 50% Fe are generally classified as stainless steels. Their special qualities lie in a chromium-rich oxide surface film that quickly regrows when damaged. This chapter discusses the classification, composition, properties, treatments, and applications of austenitic, ferritic, martensitic, duplex, precipitation-hardening, powder metallurgy, and cast stainless steels. It also reviews the history of stainless steels and provides information on alloy designation systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.9781627082860
EISBN: 978-1-62708-286-0
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080445
EISBN: 978-1-62708-304-1
... Bal Mo: 2.0–3.0 317 S31700 0.08 (a) 18.0–20.0 11.0–15.0 Bal Mo: 3.0–4.0 321 S32100 0.08 (a) 17.0–19.0 9.0–12.0 Bal Ti: 5 × C min 321H S32109 0.04–0.10 17.0–19.0 9.0–12.0 Bal Ti: 5 × C min 347 S34700 0.08 (a) 17.0–19.0 9.0–13.0 Bal Cb + Ta: 10 × C min 347H...
Abstract
This appendix is a collection of tables listing the chemical compositions of wrought ferritic steels; wrought stainless steels; cast corrosion- and heat-resistant alloys; wrought iron-, nickel-, and cobalt-base alloys; cast nickel- and cobalt-base alloys; oxide-dispersion-strengthened alloys; and iron-, nickel- and cobalt-base filler metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310233
EISBN: 978-1-62708-326-3
... Mo; 0.10–0.16 N 316N S31651 0.08 2.00 1.00 16.0–18.0 10.0–14.0 0.045 0.03 2.0–3.0 Mo; 0.10–0.16 N 317 S31700 0.08 2.00 1.00 18.0–20.0 11.0–15.0 0.045 0.03 3.0–4.0 Mo 317L S31703 0.03 2.00 1.00 18.0–20.0 11.0–15.0 0.045 0.03 3.0–4.0 Mo 321 S32100 0.08 2.00...
Abstract
This chapter discusses the composition and classification of stainless steels and focuses on the processes involved in heat treatment and applications of these steels. The wrought and the cast stainless steels covered are ferritic, austenitic, duplex (ferritic-austenitic), martensitic, and precipitation-hardening. In addition, information on special considerations for stainless steel castings is also provided. The heat treatment processes explained in the chapter are preheating, annealing, stress relieving, hardening, tempering, austenite conditioning, heat aging, and nitride surface hardening. Finally, some special considerations for stainless steel castings are discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310069
EISBN: 978-1-62708-286-0
... drawing S30400 0.06 0.04 18.3 9.1 0.3 1.8 0.45 0.001 S 0.030 P 0.4 Cu 304L tubing S30403 0.02 0.09 18.3 8.1 0.3 1.8 0.45 0.013 S 0.030 P 0.4 Ci 305 S30500 0.05 0.02 18.8 12.1 0.2 0.8 0.60 0.001 S 0.02 P 0.2 Cu 321 S32100 0.05 0.01 17.7 9.1 0.03 1.0 0.45...
Abstract
This chapter discusses the compositions, mechanical properties, phase structure, stabilization, corrosion resistance, and advantages of austenitic stainless steels. Austenitic alloys are classified and reviewed in three groups: (1) lean alloys, such as 201 and 301, which are generally used when high strength or high formability is the main objective; (2) chromium nickel alloys used for high temperature oxidation resistance; and (3) chromium, molybdenum, nickel, and nitrogen alloys used for applications where corrosion resistance is the main objective.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200422
EISBN: 978-1-62708-354-6
... 11.00/15.00 3.00/4.00 321 (S32100) 0.08 2.00 0.045 0.030 1.00 17.00/19.00 9.00/12.00 Ti5×C min 329 (S32900) 0.10 2.00 0.040 0.030 1.00 25.00/30.00 3.00/6.00 1.00/2.00 330 (N08330) 0.08 2.00 0.040 0.030 0.75/1.50 17.00/20.00 34.00/37.00 347 (S34700) 0.08 2.00...
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820043
EISBN: 978-1-62708-339-3
... 1.00 18.0–20.0 11.0–15.0 0.045 0.03 3.0–4.0 Mo S31703 317L 0.03 2.0 1.00 18.0–20.0 11.0–15.0 0.045 0.03 3.0–4.0 Mo S32100 321 0.08 2.0 1.00 17.0–19.0 9.0–12.0 0.045 0.03 5 × %C min Ti S34700 347 0.08 2.0 1.00 17.0.-19.0 9.0–13.0 0.045 0.03 10 × %C min Nb...
Abstract
Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This chapter provides a basic understanding of grade designations, properties, and welding considerations of austenitic stainless steels. It also discusses general types of corrosive attack and their effects on service integrity as well as detection and control measures. The five corrosive attack mechanisms covered are intergranular corrosion, preferential attack associated with weld metal precipitates, pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430027
EISBN: 978-1-62708-253-2
Abstract
This chapter describes the metallurgy, composition, and properties of steels and other alloys. It provides information on the atomic structure of metals, the nature of alloy phases, and the mechanisms involved in phase transformations, including time-temperature effects and the role of diffusion, nucleation, and growth. It also discusses alloying, heat treating, and defect formation and briefly covers condenser tube materials.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820203
EISBN: 978-1-62708-339-3
... acid (A 262-A) ... (a) Ferric sulfate (A 262-B) 120 0.1 (4) S32100 Type 321 1 h at 675 °C (1250 °F) Nitric acid (A 262-C) 240 0.05 (2) S34700 Type 347 1 h at 675 °C (1250 °F) Nitric acid (A 262-C) 240 0.05 (2) N08020 20Cb-3 1 h at 675 °C (1250 °F) Ferric sulfate (G 28...
Abstract
This chapter addresses in-service monitoring and corrosion testing of weldments. Three categories of corrosion monitoring are discussed: direct testing of coupons, electrochemical techniques, and nondestructive testing techniques. The majority of the test methods for evaluating corrosion of weldments are used to assess intergranular corrosion of stainless steels and high-nickel alloys. Other applicable tests evaluate pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion. Each of these test methods is reviewed in this chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... 0.03 1.00 18.00–20.00 11.00–15.00 3.00–4.00 … S31703 317L 0.03 2.00 0.045 0.03 1.00 18.00–20.00 11.00–15.00 3.00–4.00 … S32100 321 0.08 2.00 0.045 0.03 1.00 17.00–19.00 9.00–12.00 … Ti:5×C min 329 0.10 2.00 0.04 0.03 1.00 25.00–30.00 3.00–6.00 1.00–2.00...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030292
EISBN: 978-1-62708-282-2
... that enhance passivity against more hostile process environments. Compositions of commonly used stainless and nickel-base alloys Table 1 Compositions of commonly used stainless and nickel-base alloys Alloy UNS designation Composition (a) , wt% C Cr Fe Ni Mo Other C-276 N10276 0.02...
Abstract
This chapter presents the primary considerations and mechanisms for corrosion and how they are involved in the selection of materials for process equipment in petroleum refineries and petrochemical plants. In addition, specific information on mechanical properties, corrosion, sulfide stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.9781627082532
EISBN: 978-1-62708-253-2