Skip Nav Destination
Close Modal
Search Results for
UNS N06690
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-12 of 12
Search Results for UNS N06690
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Materials Selection for Corrosion Control
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030215
EISBN: 978-1-62708-282-2
... and/or a lack of appreciation of the true service conditions ( Ref 5 ). As an example, a type 316 stainless steel (Unified Numbering System, or UNS, S31600) pipe was considered a suitable choice for admitting steam and subsequently air into a chemical slurry in a reaction vessel; however, it experienced...
Abstract
This chapter outlines the step-by-step processes by which materials are selected in order to prevent or control corrosion and includes information on materials that are resistant to the various forms of corrosion. The various forms of corrosion covered are general (uniform) corrosion, localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered.
Book Chapter
Corrosion of High-Nickel Alloy Weldments
Available to PurchaseBook: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
... ... 0.5 0.2 0.08 ... ... ... 625 N06625 Wrought 61 ... 9 21.5 2.5 ... 0.2 0.2 0.05 0.2 0.2 Nb + Ta 3.6 690 N06690 Wrought 58 (b) 0.5 (a) ... 29 9 ... 0.5 (a) 0.5 (a) 0.05 (a) ... ... ... 725 N07725 Wrought (age hardenable) 57 ... 8 21 7.5 ... 0.35...
Abstract
Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis in this chapter is on the CRAs and in particular nickel-chromium-molybdenum alloys. The chapter provides a basic understanding of general welding considerations and describes the welding metallurgy of molybdenum-containing CRAs and of nickel-copper, nickel-chromium, and nickel-chromium-iron CRAs. It discusses the corrosion behavior of nickel-molybdenum alloys and nickel-chromium-molybdenum alloys. Information on the phase stability and corrosion behavior of nickel-base alloys is also included.
Book Chapter
Nickel and Nickel Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170495
EISBN: 978-1-62708-297-6
... … … … … … 1.0–1.7 0.10 1.0 0.50 … 1.0 Cu Inconel 690 N06690 58.0 min 27.0–31.0 7.0–11.0 … … … … … … 0.05 0.50 0.50 … 0.50 Cu Haynes 214 N07214 bal 15.0–17.0 2.0–4.0 2.0 0.5 0.5 … 0.5 4.0–5.0 0.05 0.5 0.2 0.006 0.05 Zr, 0.002–0.040Y Iron-nickel-chromium alloys...
Abstract
This article examines the role of alloying in the production and use of nickel and its alloys. It explains how nickel-base alloys are categorized and lists the most common grades along with their compositional ranges and corresponding UNS numbers. It describes the role of nearly 20 alloying elements and how they influence strength, ductility, hardness, and corrosion resistance. It also addresses processing issues, explaining how alloying and intermetallic phases affect forming, welding, and machining operations.
Book Chapter
Corrosion Resistance of Stainless Steels and Nickel Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030176
EISBN: 978-1-62708-282-2
... and high-temperature strength. Increasing chromium to 30%, as in alloy 690 (N06690), also increases resistance to SCC in high-temperature (300 °C, or 570 °F) water and to corrosion in nitric acid solutions, steam, oxidizing gases, and shipboard waste-incinerator environments. Increasing chromium to 50...
Abstract
Stainless steels and nickel-base alloys are recognized for their resistance to general corrosion and other categories of corrosion. This chapter examines the effects of specific alloying elements, metallurgical structure, and mechanical conditioning on the corrosion resistance of these alloys. Some categories of corrosion covered are pitting, crevice, intergranular, stress-corrosion cracking, general, and high-temperature corrosion.
Book Chapter
Properties of Nickel-Alloy Welds
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930329
EISBN: 978-1-62708-359-1
... 15.5 … … … … 601 N06601 60.5 … 14.4 23.0 … … … … 1.4 Al 617 N06617 52.0 12.5 1.5 22.0 9.0 … … … 1.2 Al 625 N06625 61.0 … 2.5 21.5 9.0 … … … 3.6 Nb 690 N06690 61.5 … 9.0 29.0 … … … … … HX … 47.5 1.5 18.5 21.8 9.0 … … … 0.6 W 800...
Abstract
Nickel-base alloys are generally used in harsh environments that demand either corrosion resistance or high-temperature strength. This article first describes the general welding characteristics of nickel-base alloys. It then describes the weldability of solid-solution nickel-base alloys in terms of grain boundary precipitation, grain growth, and hot cracking in the heat-affected zone; fusion zone segregation and porosity; and postweld heat treatments. Next, the article analyzes the welding characteristics of dissimilar and clad materials. This is followed by sections summarizing the various types and general weldability of age-hardened nickel-base alloys. The article then discusses the composition, welding metallurgy, and properties of cast nickel-base superalloys. Finally, it provides information on the welding of dissimilar metals, filler metal selection for welding clad materials and for overlay cladding, service conditions during repair, and welding procedural idiosyncrasies of cobalt-base alloys.
Book Chapter
Chemical Compositions of Alloys and Filler Metals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080445
EISBN: 978-1-62708-304-1
...: 0.05–0.12, Zr: 0.01–0.1 INCONEL 617 N06617 0.07 22.0 Bal 12.5 1.5 9.0 … A1: 1.2 INCONEL 625 N06625 0.10 (a) 21.5 Bal … 2.5 9.0 … Cb: 3.6 INCONEL 690 N06690 0.02 29.0 Bal … 9.0 … … … INCONEL 693 N06693 0.2 29.0 Bal … 4.0 … … Al: 2.5–4.0, Nb: 0.5–2.5...
Abstract
This appendix is a collection of tables listing the chemical compositions of wrought ferritic steels; wrought stainless steels; cast corrosion- and heat-resistant alloys; wrought iron-, nickel-, and cobalt-base alloys; cast nickel- and cobalt-base alloys; oxide-dispersion-strengthened alloys; and iron-, nickel- and cobalt-base filler metals.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090135
EISBN: 978-1-62708-266-2
...-3 N10675 0.01 max 3 max 1.5 ... 1.5 28.5 65 min 3 max Mn=3 max; Al=0.5 max Ni-Fe-Cr alloys Alloy 600 N06600 0.15 max ... 15.5 0.5 max 8 ... 72 min ... ... Alloy 800 N08800 0.1 max ... 21 0.75 max 46 ... 32.5 ... Al=0.3; Ti=0.3 Alloy 690 N06690 0.05 max...
Abstract
Nickel and nickel-base alloys are specified for many applications, such as oil and gas production, power generation, and chemical processing, because of their resistance to stress-corrosion cracking (SCC). Under certain conditions, however, SCC can be a concern. This chapter describes the types of environments and stress loads where nickel-base alloys are most susceptible to SCC. It begins with a review of the physical metallurgy of nickel alloys, focusing on the role of carbides and intermetallic phases. It then explains how SCC occurs in the presence of halides (such as chlorides, bromides, iodides, and fluorides), sulfur-bearing compounds (such as H2S and sulfur-oxyanions), high-temperature and supercritical water, and caustics (such as NaOH), while accounting for temperature, composition, microstructure, properties, environmental contaminants, and other factors. The chapter also discusses the effects of hydrogen embrittlement and provides information on test methods.
Book
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Book Chapter
Monitoring and Testing of Weld Corrosion
Available to PurchaseBook: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820203
EISBN: 978-1-62708-339-3
... Hastelloy G-3 None Ferric sulfate (G 28-A) 120 0.043 (1.7) sheet, plate, and bar; 0.05 (2) pipe and tubing N06625 Inconel 625 None Ferric sulfate (G 28-A) 120 0.075 (3) N06690 Inconel 690 1 h at 540 °C (1000 °F) Nitric acid (A 262-C) 240 0.025 (1) N10276 Hastelloy C-276 None Ferric...
Abstract
This chapter addresses in-service monitoring and corrosion testing of weldments. Three categories of corrosion monitoring are discussed: direct testing of coupons, electrochemical techniques, and nondestructive testing techniques. The majority of the test methods for evaluating corrosion of weldments are used to assess intergranular corrosion of stainless steels and high-nickel alloys. Other applicable tests evaluate pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion. Each of these test methods is reviewed in this chapter.
Book Chapter
Corrosion Characteristics of Structural Materials
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... A 588) used in building and bridge construction Table 2 Compositional limits for weathering steel grades (ASTM A 588) used in building and bridge construction Grade UNS designation Heat compositional limits (a) , % C Mn P S Si Cr Ni Cu V Other A K11430 0.10–0.19 0.90–1.25...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Book Chapter
The Production of Extruded Semifinished Products from Metallic Materials
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980195
EISBN: 978-1-62708-342-3
Abstract
Compared with other deformation processes used to produce semifinished products, the hot-working extrusion process has the advantage of applying pure compressive forces in all three force directions, enhancing workability. The available variations in the extrusion process enable a wide spectrum of materials to be extruded. This chapter focuses on the processes involved in the extrusion of semifinished products in various metals and their alloys, namely tin, lead, lead-base soft solders, tin-base soft solders, zinc, magnesium, aluminum, copper, titanium, zirconium, iron, nickel, and powder metals. It discusses their properties and applications as well as suitable equipment for extrusion. It further discusses the processes involved in the extrusion of semifinished products in exotic alloys and extrusion of semifinished products from metallic composite materials.
Book Chapter
Forms of Corrosion: Recognition and Prevention
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.