Skip Nav Destination
Close Modal
Search Results for
UNS G41400
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9 Search Results for
UNS G41400
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 April 2013
Fig. 1 Flow lines in closed die forged UNS G41400 steering knuckle revealed by cold deep acid etching with 10% aqueous HNO 3 (0.5×) and enhanced with inking. Source: Ref 1
More
Image
Published: 01 December 2003
Fig. 12 Examples of oxynitrided piston rods. Center rod: before treatment. Two rods at left: untreated and subjected to salt spray testing. Two rods at right: treated, then subjected to salt spray testing. Material is similar to UNS G41400 and H41400 chromium-molybdenum steels. Courtesy
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030215
EISBN: 978-1-62708-282-2
... and/or a lack of appreciation of the true service conditions ( Ref 5 ). As an example, a type 316 stainless steel (Unified Numbering System, or UNS, S31600) pipe was considered a suitable choice for admitting steam and subsequently air into a chemical slurry in a reaction vessel; however, it experienced...
Abstract
This chapter outlines the step-by-step processes by which materials are selected in order to prevent or control corrosion and includes information on materials that are resistant to the various forms of corrosion. The various forms of corrosion covered are general (uniform) corrosion, localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900071
EISBN: 978-1-62708-350-8
... rods. Center rod: before treatment. Two rods at left: untreated and subjected to salt spray testing. Two rods at right: treated, then subjected to salt spray testing. Material is similar to UNS G41400 and H41400 chromium-molybdenum steels. Courtesy of Plateg USA Abstract This chapter begins...
Abstract
This chapter begins with an overview of the history of ion nitriding. This is followed by sections that describe how the ion nitriding process works, glow discharge characteristics, process parameters requiring good control, and the applications of plasma processing. The chapter explores what happens in the ion nitriding process and provides information on its gas ratios. It describes the reactions that occur at the surface of the material being treated during iron nitriding and defines corner effect and nitride networking. Further, the chapter provides information on the stability of surface layers and processes involved in the degradation of surface finish and control of the compound zone formation. Gases primarily used for ion nitriding and the control parameters used in ion nitriding are also covered. The chapter also presents the philosophies and advantages of the plasma generation technique for nitriding. It concludes with processes involved in oxynitriding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720001
EISBN: 978-1-62708-305-8
... not be visible to the naked eye, as shown in the flow lines in Fig. 1 . Fig. 1 Flow lines in closed die forged UNS G41400 steering knuckle revealed by cold deep acid etching with 10% aqueous HNO 3 (0.5×) and enhanced with inking. Source: Ref 1 Given the wide variety of surface flaws that may...
Abstract
This chapter provides an overview of the various inspection methods used with metals and alloys, namely visual inspection, coordinate measuring machines, machine vision, hardness testing, tensile testing, chemical analysis, metallography, and nondestructive testing. The nondestructive testing methods discussed are liquid penetrant inspection, magnetic particle inspection, eddy current inspection, radiographic inspection, and ultrasonic testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440125
EISBN: 978-1-62708-262-4
... 0.40–0.60 0.035 0.040 0.15–0.30 … 0.80–1.10 0.15–0.25 4137 G41370 0.35–0.40 0.70–0.90 0.035 0.040 0.15–0.30 … 0.80–1.10 0.15–0.25 4140 G41400 0.38–0.43 0.75–1.00 0.035 0.040 0.15–0.30 … 0.80–1.10 0.15–0.25 4142 G41420 0.40–0.45 0.75–1.00 0.035 0.040 0.15–0.30...
Abstract
This chapter discusses the fundamentals of heat treating of alloy steels. It begins with an overview of the designations of AISI-SAE grades of alloy steels, followed by a description of the purposes served by alloying elements. The effects of specific alloying elements on the heat treatment of alloy steels and of boron on hardenability of alloy steels are then discussed. Procedures for heat treating four specific alloy steels (4037, 4037H; 4140, 4140H; 4340, 4340; and E52100) are subsequently presented. The chapter concludes with a brief account of austempering and martempering treatments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310095
EISBN: 978-1-62708-326-3
... carbon steel with a manganese content of no greater than 1.0% with a mean (nominal) carbon content of 0.40 wt% carbon. Additionally, there may be equivalent designations using the Unified Numbering System (UNS) established by ASTM International (ASTM E527) and SAE International (SAE J 1086). The first...
Abstract
This chapter describes the designations of carbon and low-alloy steels and their general characteristics in terms of their response to hardening and mechanical properties. The steels covered are low-carbon steels, higher manganese carbon steels, boron-treated carbon steels, H-steels, free-machining carbon steels, low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, and low-alloy silicon-manganese steels. The chapter provides information on residual elements, microalloying, grain refinement, mechanical properties, and grain size of these steels. In addition, the effects of free-machining additives are also discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200422
EISBN: 978-1-62708-354-6
... Cr-Mo Steels 4118 G41180 0.18/0.23 0.70/0.90 0.035 0.040 0.15/0.30 ... 0.40/0.60 0.08/0.15 4130 G41300 0.28/0.33 0.40/0.60 0.035 0.040 0.15/0.30 ... 0.80/1.10 0.15/0.25 4137 G41370 0.35/0.40 0.70/0.90 0.035 0.040 0.15/0.30 ... 0.80/1.10 0.15/0.25 4140 G41400...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240371
EISBN: 978-1-62708-251-8
...–0.15 4130 G41300 0.28–0.33 0.40–0.60 0.035 0.040 0.15–0.35 … 0.80–1.10 0.15–0.25 4140 G41400 0.38–0.43 0.75–1.00 0.035 0.040 0.15–0.35 … 0.80–1.10 0.15–0.25 Nickel-molybdenum steels 4620 G46200 0.17–0.22 0.45–0.65 0.035 0.040 0.15–0.35 1.65–2.00 … 0.20–0.30...
Abstract
Alloy steels are alloys of iron with the addition of carbon and one or more of the following elements: manganese, chromium, nickel, molybdenum, niobium, titanium, tungsten, cobalt, copper, vanadium, silicon, aluminum, and boron. Alloy steels exhibit superior mechanical properties compared to plain carbonsteels as a result of alloying additions. This chapter describes the beneficial effects of these alloying elements in steels. It discusses the mechanical properties, nominal compositions, advantages, and engineering applications of various classes of alloy steels. They are low-alloy structural steels, SAE/AISI alloy steels, high-fracture-toughness steels, maraging steels, austenitic manganese steels, high-strength low-alloy steels, dual-phase steels, and transformation-induced plasticity steels.