1-20 of 145 Search Results for

Titanium cladding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230221
EISBN: 978-1-62708-351-5
... to a point where it becomes unworkable, as shown by Fig. 7.11 . This limitation can be overcome by either preparing the alloy in a ductile form by rapid solidification, producing a composite preform comprising a core of titanium and a cladding of silver-copper alloy, or applying titanium as a metallization...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
... include jet engine seals, metalforming tools, tools and dies for ceramic and plastic processing, components used in the chemical and general processing industries, and machine elements. Commonly employed carbides include titanium carbide (TiC), silicon carbide (SiC), tungsten carbide (WC), chromium...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930329
EISBN: 978-1-62708-359-1
.... Dry torch gases and adequate gas protection are necessities. Although the use of filler metals helps in porosity control, because of the additions of gas-absorbing elements such as titanium and aluminum, proper precautions are still necessary. Porosity control is much easier in the nickel-chromium...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250093
EISBN: 978-1-62708-287-7
... of chromium carbides and that the carbon could be controlled by adding stronger carbide formers, such as titanium, columbium, vanadium, molybdenum, or tungsten, to form carbides of these alloys rather than that of chromium. Finally, Monnartz learned that the addition of 2 to 3% molybdenum greatly increased...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820143
EISBN: 978-1-62708-339-3
... Abstract The nonferrous alloys described in this chapter include aluminum and aluminum alloys, copper and copper alloys, titanium and titanium alloys, zirconium and zirconium alloys, and tantalum and tantalum alloys. Some of the factors that affect the corrosion performance of welded nonferrous...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030169
EISBN: 978-1-62708-282-2
..., titanium, zirconium, lithium, and nickel. These are frequently included to improve mechanical and other physical properties. The effects of each of the five major alloying elements are discussed briefly. Some aluminum alloys are binary, while others are multiconstituent, containing three or four major...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290137
EISBN: 978-1-62708-306-5
... to impede atomic bonding, such as surface oxides or absorbed gases at the bonding interface. In practice, oxide-free conditions exist only for a limited number of materials. Accordingly, the properties of real surfaces limit and impede the extent of diffusion bonding. The most notable exception is titanium...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480331
EISBN: 978-1-62708-318-8
... Abstract This chapter discusses the corrosion behavior of titanium, the types of corrosion that can occur, and the effect of alloying on corrosion resistance. It explains that, due to its tenacious oxide film, titanium has excellent corrosion resistance in oxidizing environments...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790257
EISBN: 978-1-62708-356-0
... by the Swedish scientist Peter Jacob Hjelm. (The Climax Mine in Climax, Colorado, has been the world’s largest molybdenum mine.) 1790 Titanium Discovered Titanium is first discovered in England by Wilhelm Gregor, although it did not receive a name until Martin Heinrich Klaproth found it in Hungary...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030184
EISBN: 978-1-62708-282-2
... currents. Precious metal anodes are platinized titanium or tantalum anodes; the platinum is either clad to or electroplated on the substrate. The small precious metal anode shown in Fig. 17 performs the same function as materials weighing several times more. Fig. 17 Precious metal impressed...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120131
EISBN: 978-1-62708-269-3
... alloy components. A related process is the laser forming of titanium components, which is claimed to reduce lead times for the fabrication of complex titanium structures by 50 to 75%. Lasform is the name for a direct metal deposition process that combines high-power laser cladding technologies...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490329
EISBN: 978-1-62708-340-9
... on the factors that affect cladding integrity and ends with a section on life-assessment techniques. chemical composition cladding coal-liquefaction reactors degradation hydroprocessor reactor vessels life assessment General Description In the past, concern in the petroleum industry regarding...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460277
EISBN: 978-1-62708-285-3
... metals and alloys that have been reclaimed using this technology in dimensional restoration and repair include magnesium and its alloys, nickel and its alloys, low-alloy steels, stainless steels, cast iron, titanium and its alloys, and aluminum and its alloys. Repairs of these materials have been...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910363
EISBN: 978-1-62708-250-1
..., and inspection and quality assurance. The next section discusses the methods by which metals, and in some cases their alloys, can be applied to almost all other metals and alloys: electroplating, electroless plating, hot dipping, thermal spraying, cladding, pack cementation, vapor deposition, ion implantation...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980195
EISBN: 978-1-62708-342-3
... spectrum of materials to be extruded. This chapter focuses on the processes involved in the extrusion of semifinished products in various metals and their alloys, namely tin, lead, lead-base soft solders, tin-base soft solders, zinc, magnesium, aluminum, copper, titanium, zirconium, iron, nickel...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
... key alloy categories: Light metals (aluminum, beryllium, magnesium, and titanium) Corrosion-resistance alloys (cobalt, copper, nickel, titanium, aluminum) Superalloys (nickel, cobalt, iron-nickel) Refractory metals (molybdenum, niobium, rhenium, tantalum, and tungsten) Low-melting...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610209
EISBN: 978-1-62708-303-4
... Abstract This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.9781627083560
EISBN: 978-1-62708-356-0
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170587
EISBN: 978-1-62708-297-6
...-Expansion Alloys Alloys that have low coefficients of expansion, and alloys with constant modulus of elasticity, can be made age hardenable by adding titanium. In low-expansion alloys, nickel content must be increased when titanium is added. The higher nickel content is required because any titanium...