Skip Nav Destination
Close Modal
Search Results for
Titanium
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1604 Search Results for
Titanium
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170417
EISBN: 978-1-62708-297-6
... Abstract This article discusses the role of alloying in the production and use of titanium. It explains how alloying elements affect transformation temperatures, tensile and creep strength, elasticity, hardness, and corrosion behaviors. It provides composition and property data for commercial...
Abstract
This article discusses the role of alloying in the production and use of titanium. It explains how alloying elements affect transformation temperatures, tensile and creep strength, elasticity, hardness, and corrosion behaviors. It provides composition and property data for commercial grades of titanium, addresses processing issues, and identifies operating environments where certain titanium alloys are susceptible to stress-corrosion cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250129
EISBN: 978-1-62708-287-7
... Abstract This chapter is a detailed account of the history of development of titanium and its modern applications in the aerospace market. It begins by discussing the attempts made to produce titanium metal. This is followed by a discussion on the invention of a process for making titanium...
Abstract
This chapter is a detailed account of the history of development of titanium and its modern applications in the aerospace market. It begins by discussing the attempts made to produce titanium metal. This is followed by a discussion on the invention of a process for making titanium by William Kroll. Various studies on the properties on titanium and research programs related to the production of titanium sponge and titanium metal products are then described. The chapter concludes with a discussion of titanium use in jet engines.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480293
EISBN: 978-1-62708-318-8
... Abstract This chapter familiarizes readers with the machining characteristics of titanium and the implementation of machining and shaping processes. It explains why titanium alloys are more difficult to machine than other metals and how it impacts the equipment and procedures that can be used...
Abstract
This chapter familiarizes readers with the machining characteristics of titanium and the implementation of machining and shaping processes. It explains why titanium alloys are more difficult to machine than other metals and how it impacts the equipment and procedures that can be used. It describes the basic machining requirements for titanium in terms of tool geometry and materials, machine setup rigidity, cutting speeds and feed rates, and surface conditions, and explains how the requirements are met in practice in milling, turning, drilling, surface grinding, and broaching operations. The chapter also covers chemical and electrochemical machining processes as well as flame cutting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480353
EISBN: 978-1-62708-318-8
... Abstract This chapter describes the applications with the greatest impact on titanium consumption and global market trends. It explains where, how, and why titanium alloys are used in aerospace, automotive, chemical processing, medical, and military applications as well as power generating...
Abstract
This chapter describes the applications with the greatest impact on titanium consumption and global market trends. It explains where, how, and why titanium alloys are used in aerospace, automotive, chemical processing, medical, and military applications as well as power generating equipment, sporting goods, oil and gas production, and marine vessels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240527
EISBN: 978-1-62708-251-8
... Abstract Titanium alloys are classified according to the amount of alpha and beta phase material retained in their structures at room temperature. This chapter discusses the metallurgy, composition, processing, and properties of titanium and its alloys. It provides information on melting...
Abstract
Titanium alloys are classified according to the amount of alpha and beta phase material retained in their structures at room temperature. This chapter discusses the metallurgy, composition, processing, and properties of titanium and its alloys. It provides information on melting, forging, casting, heat treating, and secondary fabrication. It also discusses the advantages and disadvantages of titanium and its alloys in various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120001
EISBN: 978-1-62708-269-3
... Abstract This chapter provides a general overview of titanium and its versatility as an engineering material. titanium ReadMe.First IN THE BUSINESS WORLD OF TODAY, the extended treatment offered by many reference books may pose an obstacle to a manager or other person needing...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120144
EISBN: 978-1-62708-269-3
... Abstract This appendix provides datasheets on high purity titanium, describing its processing characteristics, mechanical and fabrication properties, and heat treating practices. high purity titanium ...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540411
EISBN: 978-1-62708-309-6
... Abstract This appendix provides tensile property data for titanium alloys and castings and plane-strain fracture toughness data for Ti-6Al-4V castings. alpha-beta titanium alloys beta titanium alloys titanium castings plane-strain fracture toughness tensile properties LIMITED...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540415
EISBN: 978-1-62708-309-6
... Abstract This appendix provides tensile property and fracture toughness data for titanium aluminides developed for aerospace applications. plane-strain fracture toughness tensile properties titanium aluminides LIMITED MECHANICAL PROPERTIES DATA for several selected titanium...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090271
EISBN: 978-1-62708-266-2
... Abstract Titanium alloys are generally resistant to stress-corrosion cracking (SCC), but under certain conditions, the potential for problems exists. This chapter identifies the types of service environments where titanium alloys have exhibited signs of SCC. It begins by describing the nominal...
Abstract
Titanium alloys are generally resistant to stress-corrosion cracking (SCC), but under certain conditions, the potential for problems exists. This chapter identifies the types of service environments where titanium alloys have exhibited signs of SCC. It begins by describing the nominal composition, designation, and grade of nearly two dozen commercial titanium alloys and the different types of media (including oxidizers, organic compounds, hot salt, and liquid metal) in which SCC has been observed. It discusses the mechanical and metallurgical factors that influence SCC behavior and examines the cracking and fracture mechanisms that appear to be involved. The chapter also includes information on SCC test standards and provides detailed guidelines on how to prevent or mitigate the effects of SCC.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
... Abstract This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects...
Abstract
This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects of welding phenomena that contribute to the overall understanding of titanium alloy welding metallurgy. These factors include alloy types, weldability, melting and solidification effects on weld microstructure, postweld heat treatment effects, structure/mechanical property/fracture relationships, and welding process application.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.9781627083188
EISBN: 978-1-62708-318-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120005
EISBN: 978-1-62708-269-3
... Abstract Titanium is a lightweight metal with a density approximately 60% that of steel and, through alloying and deformation processing, it can be just as strong. It is readily available in many grades and forms and can be further processed using standard methods and techniques. This chapter...
Abstract
Titanium is a lightweight metal with a density approximately 60% that of steel and, through alloying and deformation processing, it can be just as strong. It is readily available in many grades and forms and can be further processed using standard methods and techniques. This chapter provides a concise review of the capabilities of titanium and its design advantages over other materials. It includes information on properties and selection factors as well as applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120013
EISBN: 978-1-62708-269-3
... Abstract This chapter covers the basic metallurgy of titanium, explaining how it influences the development of microstructure and the mechanical properties that can be achieved. It describes the nature of each of the four major phases of titanium, the effect of alloying elements on phase...
Abstract
This chapter covers the basic metallurgy of titanium, explaining how it influences the development of microstructure and the mechanical properties that can be achieved. It describes the nature of each of the four major phases of titanium, the effect of alloying elements on phase transformations, and the formation of secondary phases. The chapter presents and interprets a wide range of micrographs and includes several tables containing composition and tensile property data for many titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120139
EISBN: 978-1-62708-269-3
... Abstract This appendix contains several tables listing UNS numbers, common names, and descriptions of important titanium alloys and where they are typically used. titanium alloys Unalloyed and modified titanium Table A.1 Unalloyed and modified titanium Alloy, UNS number...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120143
EISBN: 978-1-62708-269-3
... Abstract This appendix describes the information contained in titanium alloy datasheets and defines the many abbreviations that are used. titanium alloys THIS APPENDIX provides datasheets for the most important commercial grades of titanium and titanium alloys. These datasheets have...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120148
EISBN: 978-1-62708-269-3
... Abstract This appendix provides datasheets describing the chemical composition, processing characteristics, mechanical and fabrication properties, and heat treating of commercially pure and modified titanium. The datasheets address four grades of unalloyed titanium (ASTM Grade 1, UNS R50250...
Abstract
This appendix provides datasheets describing the chemical composition, processing characteristics, mechanical and fabrication properties, and heat treating of commercially pure and modified titanium. The datasheets address four grades of unalloyed titanium (ASTM Grade 1, UNS R50250; ASTM Grade 2, UNS R50400; ASTM Grade 3, UNS R50550; and ASTM Grade 4, UNS R50700), two grades of modified titanium (ASTM Grade 7, UNS R52400; and ASTM Grade 11, UNS R52250), and alloy Ti-0.3Mo-0.8Ni (ASTM Grade 12, UNS R53400).
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120159
EISBN: 978-1-62708-269-3
... Abstract This appendix provides datasheets describing the chemical composition, processing characteristics, mechanical and fabrication properties, and heat treating of alpha and near-alpha titanium alloys. Datasheets are provided for the following alloys: Ti-3Al-2.5V (ASTM Grade 9, UNS R56320...
Abstract
This appendix provides datasheets describing the chemical composition, processing characteristics, mechanical and fabrication properties, and heat treating of alpha and near-alpha titanium alloys. Datasheets are provided for the following alloys: Ti-3Al-2.5V (ASTM Grade 9, UNS R56320), Ti-5Al-2.5Sn (UNS R54520/R54521), Ti-6Al-2Nb-1Ta-0.8Mo (UNS R56210), Ti-6Al-2Sn-4Zr-2Mo-0.08Si (UNS R54620), Ti-8Al-1Mo-1V (UNS R54810), and Ti-6Al-2.75Sn-4Zr-0.4Mo-0.45Si (Ti-1100).
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120195
EISBN: 978-1-62708-269-3
... Abstract This appendix provides datasheets describing the chemical composition, processing characteristics, mechanical and fabrication properties, and heat treating of various grades of alpha-beta titanium. Datasheets are provided for the following alloys: Ti-5Al-2Sn-2Zr-4Mo-4Cr (UNS: R58650...
Abstract
This appendix provides datasheets describing the chemical composition, processing characteristics, mechanical and fabrication properties, and heat treating of various grades of alpha-beta titanium. Datasheets are provided for the following alloys: Ti-5Al-2Sn-2Zr-4Mo-4Cr (UNS: R58650, Ti-17); Ti-6Al-2Sn-4Zr-6Mo (UNS R56260, Ti-6246); Ti-6Al-4V (UNS R56400) and Ti-6Al-4V ELI (UNS R56401); Ti-6Al-6V-2Sn (UNS R56620, Ti-662); Ti-7Al-4Mo (UNS R56740); Ti-6Al-1.7Fe-0.1Si (TiMetal 62S); Ti-4.5Al-3V-2Mo-2Fe (SP-700); Ti-6Al-7Nb (IMI 367); Ti-4Al-4Mo-2Sn-0.5Si (IMI 550); Ti-4Al-4Mo-4Sn-0.5Si (IMI 551); Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si (Ti-6-22-22S); Ti-5Al-2.5Fe (DIN 3.7110, Tikrutan LT 35); and Ti-5Al-5Sn-2Zr-2Mo-0.25Si (UNS R54560, Ti-5522-S).
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120240
EISBN: 978-1-62708-269-3
... Abstract This appendix provides datasheets describing the chemical composition, processing characteristics, mechanical and fabrication properties, and heat treating of beta and near-beta titanium alloys. Datasheets are provided for the following alloys: Ti-11.5Mo-6Zr-4.5Sn (UNS R58030, Beta III...
Abstract
This appendix provides datasheets describing the chemical composition, processing characteristics, mechanical and fabrication properties, and heat treating of beta and near-beta titanium alloys. Datasheets are provided for the following alloys: Ti-11.5Mo-6Zr-4.5Sn (UNS R58030, Beta III); Ti-3Al-8V-6Cr-4Mo-4Zr (UNS R58640, Beta C and 38-6-44); Ti-10V-2Fe-3Al (Ti-10-2-3); Ti-13V-11Cr-3Al (UNS R58010, Ti-13-11-3); Ti-15V-3Al-3Cr-3Sn (Ti-15-3); Ti-15Mo-3Al-2.7Nb-0.25Si (UNS R58210, TiMetal 21S and Beta 21S); Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe (Beta CEZ); Ti-8Mo-8V-2Fe-3Al (Ti-8823); Ti-15Mo-5Zr; Ti-15Mo-5Zr-3Al; Ti-11.5V-2Al-2Sn-11Zr (T129); Ti-12V-2.5Al-2Sn-6Zr (T134); Ti-13V-2.7Al-7Sn-2Zr (T175); Ti-8V-5Fe-1Al; and Ti-16V-2.5Al.
1