Skip Nav Destination
Close Modal
Search Results for
Thinking errors
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 38 Search Results for
Thinking errors
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180029
EISBN: 978-1-62708-256-3
...), human (paper, error, sabotage), or latent (thinking, cultural). These possibilities open up the very concept of a failure, introducing things you can touch and things you cannot. The broken crankshaft illustrated earlier (see Fig. 5 in Chapter 1 ) is an obvious failure. The engine quit working...
Abstract
Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper service or operation, improper maintenance, improper testing, assembly errors, fabrication or manufacturing errors, and design errors. The case of the Tacoma Narrows Bridge collapse is presented to illustrate the consequence of overlooked factors, in this case, wind dynamics, and the importance of identifying root causes to prevent repeat failures.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780019
EISBN: 978-1-62708-268-6
... the system is supposed to operate. It is hard for them to think in terms of how it can fail. Think about what happens when writing and proofreading. When writing and then proofreading one’s own work, are all of the spelling, typographical, and other errors found? The answer is usually no. Proofreading...
Abstract
A system failure occurs when a system does not do what it is supposed to do when it is supposed to do it, or it does something it is not supposed to do. This chapter provides a basic understanding of how failures occur, how systems operate, and the types of failures, namely intermittent and inadvertent system failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560001
EISBN: 978-1-62708-291-4
... this objective: formation of the structure, characterization of the structure, measurement of a property, and establishment of a correlation between the structure and the property. Currently, there is much disagreement on the terms that should be applied to various groupings of these steps. Some think...
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780001
EISBN: 978-1-62708-268-6
... procedures, tools, and technologies, failure analysis training instills a way of thinking that helps engineers, manufacturing specialists, purchasing specialists, field service technicians, and quality-assurance personnel become more successful. The failure analysis process outlined in this book includes...
Abstract
This chapter focuses on what can cause a system to fail and addresses the challenge in approaching a system failure. It then examines the steps involved in the four-step problem-solving process: defining the problem, identifying all potential failure causes and evaluating the likelihood of each, identifying the potential solutions, and identifying the best solution. The chapter concludes by describing the responsibilities of a failure analysis team.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780067
EISBN: 978-1-62708-268-6
... column in the FMA&A is the event- and sheet-numbering column. This column ties each FMA&A row to an event in the fault tree. The failure analysis team should only assign event numbers to basic failures, undeveloped events, human errors, normal events, and inhibiting conditions. The team should...
Abstract
Failure mode assessment and assignment (FMA&A) is a tool designed to help organize the evaluation of hypothesized failure modes. This chapter begins by describing the process of preparing an FMA&A. It then describes the follow-on activities to evaluate the hypothesized failure cause. The chapter also provides information on evaluating the hypothesized potential causes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180127
EISBN: 978-1-62708-256-3
.... When an investigation pursues a singular theory, it has gone off-track. Welds are a great example. Some engineers think that if a failure occurs in a system with a weld, the failure automatically must be due to the weld. They become blind to any other possible root cause. Not Understanding...
Abstract
This chapter describes some common pitfalls encountered in failure investigations and provides guidance to help engineers recognize processes and “quick fixes” that companies often try to substitute for failure analysis. It discusses three important skills and characteristics that a professional engineer must improve to conduct an effective and successful failure investigation, namely technical skills, communication skills, and technical integrity. The chapter also provides information on the additional basic tools available for failure investigation and root cause determination: the Kepner-Tregoe structured problem-solving method, PROACT software for root cause analysis developed by the Reliability Center, Inc., and other processes and methods developed by the Failsafe Network, Inc., and Shainin LLC.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180061
EISBN: 978-1-62708-256-3
... treatment 14 Design error 12 Unexpected operating conditions 9 Inadequate environmental control 5 Improper inspection/quality control 4 Wrong material 3 The various failure origins listed in Table 1 , including improper material selection, fabrication defects, design error...
Abstract
Statistics, data analysis, root cause analysis, and problem-solving processes play a key role in failure investigations. This chapter explains how to collect failure investigation data, how to build and maintain a database for company-related failures, and how to use corresponding statistics including type of failure, material, and root cause. It describes the purpose and benefits of conducting a root cause analysis and the factors, namely relative failure importance and company value, that determine when an investigation should be performed. The chapter also discusses the four-step problem-solving process as it applies to failure investigation, how to assemble an investigation team, and the details of organization and planning. It concludes with a case history of the Firestone 500 steel-belted tire failure, stressing the importance of a systematic approach to failure investigations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180001
EISBN: 978-1-62708-256-3
... vehicle. This tragic event caused a nation in the midst of the early years of the “space race” to stop, think, and reconsider President John F. Kennedy’s May 25, 1961 promise that “we choose to go to the moon in this decade.” Weeks later, during the federal investigation of the Apollo 1 fire, astronaut...
Abstract
Failure investigation is an integral part of any design and manufacturing operation, providing critical information to solve manufacturing problems and assist in redesigns. This chapter addresses several aspects of failure investigation, beginning with the challenges of organizing such efforts and the need to define a clear and concise goal, direction, and plan prior to the investigation. It covers the causes of failure and the training and education organizations require to understand and prevent them. The chapter emphasizes the importance of discovering the root cause of failures, and uses examples to explain the factors involved and how to recognize them when the first appear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720085
EISBN: 978-1-62708-305-8
... of 1.0 HRC. Many operators think they can improve resolution to 0.5 HRC or even 0.1 HRC by extrapolation, but this is not true. Extrapolation of readings only increases measurement error when several operators are checking parts. As with Brinell testing, better resolution can be achieved by investing...
Abstract
This chapter discusses the operating mechanism, applications, advantages, and limitations of Brinell hardness testing, Rockwell hardness testing, Vickers hardness testing, Scleroscope hardness testing, and microhardness testing. In addition, the general precautions and selection criteria to be considered are described and details of equipment setup provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.9781627083843
EISBN: 978-1-62708-384-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.t56010001
EISBN: 978-1-62708-384-3
... before fracture. Many readers might think that the actual stress in the material must be doing the same. However, as noted above, necking begins at that peak stress, which means the cross-sectional area in the component does not remain uniform, hence, the decrease in the load-displacement curves...
Abstract
Product design requires an understanding of the mechanical properties of materials, much of which is based on tensile testing. This chapter describes how tensile tests are conducted and how to extract useful information from measurement data. It begins with a review of the different types of test equipment used and how they compare in terms of loading force, displacement rate, accuracy, and allowable sample sizes. It then discusses the various ways tensile measurements are plotted and presents examples of each method. It examines a typical load-displacement curve as well as engineering and true stress-strain curves, calling attention to certain points and features and what they reveal about the test sample and, in some cases, the cause of the behavior observed. It explains, for example, why some materials exhibit discontinuous yielding while others do not, and in such cases, how to determine when yielding begins. It also explains how to determine other properties via tensile tests, including ductility, toughness, and modulus of resilience.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780051
EISBN: 978-1-62708-281-5
... and Testing ” in this book describes both this issue and the relative notch sensitivity of neat, filled, and reinforced polymers. Strength of Plastics Many engineers are familiar with steel and wood and can “think and feel” in terms of these materials. Steel has a modulus of 210 GPa (30 × 10 6 psi...
Abstract
To ensure the proper application of plastics, one must keep in mind three factors that determine the appropriate end-use: material selection, processing, and design. This article begins by providing information on various factors pertinent to the anticipated use conditions of the article to be designed. This is followed by a discussion on several stages necessary to define the geometry of plastic parts. Details on the strength of and cost estimation for plastic parts are then provided. The article ends with a section providing information on the structure, properties, processing, and end-use applications of plastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320055
EISBN: 978-1-62708-357-7
... of the composition atoms. Ni 1– x Al x ( x = 0.3 to 0.6) of the CsCl-type structure is such an example, and it is called a nonstoichiometric compound. One can think of this compound as a kind of “solution” in terms of how it is mixed or as a compound from the style of bonding between atoms. 3.1.2 Components...
Abstract
This chapter explains the idea of solution theory and the nature of mixed materials. The chapter considers approximation of free energy by the regular solution model and sublattice model. It discusses chemical potential and nonrandom distribution based on the interactions between solute atoms.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110153
EISBN: 978-1-62708-247-1
...? A little time spent discussing the objectives will not just identify weaknesses in the initial assumptions but will allow a best approach to be explored before the work begins, maximizing the probability of a successful analysis. Think through the project all the way to final delayering and Transmission...
Abstract
The need for precise targeted interactive surgery on boards or modules is the main driver of backside preparation technology. This article assists the analyst in making decisions on backside thinning and polishing requirements. Thinning of the substrates can be accomplished by flat lapping, laser assisted chemical etch, plasma reactive ion etch, and CNC based milling and polishing. The article discusses the general characteristics, key principles, advantages, and disadvantages of these processes. It also contains case studies that illustrate the application of these processes to ceramic cavity devices, injection molded parts, and ball grid arrays.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400149
EISBN: 978-1-62708-258-7
... as opposed to a picral or nital etch, which produces a darker pearlite. 400× Fig. 6.3 A closer view of the digitized image of the microstructure of the AISI/SAE 1020 steel that was shown on the video monitor in the center of Fig. 6.1 . One can also obtain the statistical error...
Abstract
Several specialized instruments are available for the metallographer to use as tools to gather key information on the characteristics of the microstructure being analyzed. These include microscopes that use electrons as a source of illumination instead of light and x-ray diffraction equipment. This chapter describes how these instruments can be used to gather important information about a microstructure. The instruments covered include image analyzers, transmission electron microscopes, scanning electron microscopes, electron probe microanalyzers, scanning transmission electron microscopes, x-ray diffractometers, microhardness testers, and hot microhardness testers. A list of other instruments that are usually located in a research laboratory or specialized testing laboratory is also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320091
EISBN: 978-1-62708-357-7
... [Exercise 4.3] Correct errors in the binary phase diagram shown in Fig. 4.6(a) . [Answer] The degree of freedom for a binary system is f ′ = 3 – q , and the number of phases in equilibrium with each other is q ≤ 3. If Fig. 4.6(a) is correct, the number of equilibrated phases exceeds...
Abstract
This chapter explains the significance of the phase diagram and its use in the development of new materials. The chapter describes the basic rules of heterogeneous equilibrium, presents a comparison between liquidus line and solidus line, and provides information on the solubility curve and the binodal curve.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130087
EISBN: 978-1-62708-284-6
... the introduction on how to think about deformation failures and whether the heat treater even needs to be involved. Figure 1 shows what was reported to be a sudden onset event. This is actually an example of a complex failure or damage mode, because this structure was standing for quite a few years...
Abstract
This chapter reviews various ways to classify failure categories and summarizes the basic types, causes, and mechanisms of damage, with particular consideration given to whether the likelihood of the types of damage can or cannot be influenced by the heat treating of steel parts. The classical organization for types of damage (failures) is as follows: deformation, fracture, wear, corrosion or other environmental damage, and multiple or complex damage. The chapter also provides some examples of lack of conformance to specification that may at first look like the heat treater did something wrong, but where other contributing factors made it difficult or impossible for the heat treater to meet the specification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300121
EISBN: 978-1-62708-323-2
... that use test specimens exactly the same as those used in an engine. As shown in Fig. 5.1 , a segment of a piston ring reciprocates on a section of cylinder liner. If one thinks that piston ring/cylinder wear is of greatest concern in an engine, then this may be the type of test specimens to use. Fig...
Abstract
This chapter discusses the processes and procedures involved in tribotesting, the significance of test parameters and conditions, and practical considerations including test metrics and measurements and the interpretation of wear damage. It also describes the different types of erosion tests in use and common approaches for adhesive wear and abrasion testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130001
EISBN: 978-1-62708-284-6
.... Air-quenching grades of steel are more tolerant of sharp corners than liquid-quenching grades and are preferred when only minimal fillets can be used. Changes in section size can be the locus of premature failures. Figures 4 to 8 ( Ref 13 ) show failures caused by design errors and selection...
Abstract
A systematic procedure for minimizing risks involved in heat treated steel components requires a combination of metallurgical failure analysis and fitness for service with respect to safety and reliability based on risk analysis. This chapter begins with an overview of heat treat processing of steels. This is followed by sections on various aspects of heat treatment design and heat treating practices for minimizing distortion. Influence of design, steel grade, and condition is then illustrated in the examples of failures due to heat treatment. A procedure is analyzed to improve the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded components. It ends with a section on risk-based approach applicable to heat treated steel components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400169
EISBN: 978-1-62708-258-7
... of the person submitting the material in order to find out as much as possible about the material and what is required. Without proper information about the material being evaluated, the metallographer will waste a lot of time through trial and error to develop the proper procedure for an accurate and thorough...
Abstract
This chapter instructs the metallographer on the basic skills required to prepare a polished metallographic specimen. It is organized in a chronological sequence starting with the information-gathering process on the material being investigated, then moving on to sectioning, mounting, grinding, and polishing processes, and ending with methods used to properly store metallographic specimens. The discussion covers the preparation procedures, the materials being investigated, and equipment used to perform these procedures.