Skip Nav Destination
Close Modal
Search Results for
Sulfites, environment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 20 Search Results for
Sulfites, environment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2000
to convert the normally adherent and insoluble zinc carbonates into zinc sulfite and zinc sulfate. These sulfur compounds are water soluble and adhere poorly to the zinc surface. They are removed by rain with relative ease, exposing a fresh zinc surface to additional corrosion. In general, zinc dissipates
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310265
EISBN: 978-1-62708-286-0
... an orientation to materials in which the yield/tensile ratio is closer to unity, unlike either duplex or austenitic stainless steel. In the more unusual case of digesters using the sulfite process, the materials selected would be the same. As one proceeds downstream in the process, environments change...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480331
EISBN: 978-1-62708-318-8
... to 6 m/s (20 ft/s). Environments that cause erosion-corrosion of titanium are so abrasive that it is questionable whether corrosion is involved at all. Environmental Cracking Environmental cracking typically shows itself as either stress-corrosion cracking or hydrogen embrittlement. Stress...
Abstract
This chapter discusses the corrosion behavior of titanium, the types of corrosion that can occur, and the effect of alloying on corrosion resistance. It explains that, due to its tenacious oxide film, titanium has excellent corrosion resistance in oxidizing environments and that the resistance can be extended into the “reducing-acid” region by adding a small amount of palladium. It describes how different grades of titanium respond to different forms of attack, including uniform, crevice, and galvanic corrosion. It also identifies applications where corrosion is often a concern.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030019
EISBN: 978-1-62708-282-2
... the separation in the galvanic series, as described subsequently. Environmental Control In particular cases, it is possible to reduce or eliminate galvanic-corrosion effects between widely dissimilar metals or alloys in a particular environment. The use of corrosion inhibitors is effective in some cases...
Abstract
This chapter provides a brief account of galvanic corrosion, which occurs when a metal or alloy is electrically coupled to another metal or conducting nonmetal in the same electrolyte. It begins by describing the galvanic series of metals and alloys useful for predicting galvanic relationships, followed by a brief section on polarization of metals or alloys. The effects of area, distance, and geometric shapes on galvanic-corrosion behavior are then discussed. Various alloys susceptible to galvanic corrosion are briefly reviewed. The chapter also discusses various modes of attack that lead to galvanic corrosion, along with methods for predicting and controlling galvanic corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030247
EISBN: 978-1-62708-282-2
..., particularly at the upper end of the range, adequate ductility is often difficult to achieve. Also, heat treatments developed for other applications may not be optimal for corrosion resistance in petroleum environments. Environmental Considerations There are several environmental factors that are more...
Abstract
This chapter discusses the particular corrosion problems encountered and the methods of control used in petroleum production and the storage and transportation of oil and gas up to the refinery. It begins by describing those aspects of corrosion that tend to be unique to corrosion as encountered in applications involving oil and gas exploration and production. This is followed by a section reviewing the methods of corrosion control, namely the proper selection of materials, protective coatings, cathodic protection systems, use of inhibitors, use of nonmetallic materials, and control of the environment. The chapter ends with a discussion on the problems encountered and protective measures that are based on the state-of-the-art as practiced daily by corrosion and petroleum engineers and production personnel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030200
EISBN: 978-1-62708-282-2
... of adsorption could be possible with organic inhibitors: π-bond orbital adsorption, electrostatic adsorption, and chemisorption. A more simplistic view of this mechanism of corrosion inhibitors can be described as controlled precipitation of the inhibitor from its environment (water and hydrocarbons) onto metal...
Abstract
This chapter provides a detailed account of corrosion inhibitors for oil and gas production. It begins by discussing some of the demands of competitive industry on inhibitor formulations. It then describes the varying characteristics of oil wells, gas wells, water injection systems, and pipelines. The following sections provide information on the factors influencing corrosivity of produced fluids and the methods of inhibitor application. The chapter discusses the primary causes of corrosion problems and inhibition in waterfloods and provides an overview of bacteria-induced corrosion. Various laboratory testing methods of corrosion inhibitors and the methods used to monitor corrosion rates and inhibitor effectiveness are also presented. The chapter ends by providing information on quality control of inhibitors and computerization of inhibitor treating programs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... Abstract All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090095
EISBN: 978-1-62708-266-2
... environments of nuclear light-water reactors is discussed later in this chapter. Effects of Environmental Variables Temperature is an important variable in determining whether chloride SCC will occur. The traditional engineering viewpoint, based on practical experience ( Ref 4.53 ), has been...
Abstract
This chapter takes a practical approach to the problem of stress-corrosion cracking (SCC) in stainless steels, explaining how different application environments affect different grades of stainless steel. It describes the causes of stress-corrosion cracking in chloride, caustic, polythionic acid, and high-temperature environments and the correlating effects on austenitic, ferritic, duplex, martensitic, and precipitation hardening stainless steels and nickel-base alloys. It also discusses the contributing effects of sensitization and hydrogen embrittlement and the role of composition, microstructure, and thermal history. Sensitization is particularly detrimental to austenitic stainless steels, and in many cases, eliminating it will eliminate the susceptibility to SCC. The chapter includes an extensive amount of data and illustrations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910363
EISBN: 978-1-62708-250-1
... important properties. Coatings and linings may protect substrates by three basic mechanisms: Barrier protection Chemical inhibition Galvanic (sacrificial) protection Barrier protection is achieved when coatings completely isolate the substrate from the environment. Chemical inhibition...
Abstract
Organic coatings (paints and plastic or rubber linings), metallic coatings, and nonmetallic inorganic coatings (conversion coatings, cements, ceramics, and glasses) are used in applications requiring corrosion protection. These coatings and linings may protect substrates by three basic mechanisms: barrier protection, chemical inhibition, and galvanic (sacrificial) protection. This chapter begins with a section on organic coating and linings, providing a detailed account of the steps involved in the coating process, namely, design and selection, surface preparation, application, and inspection and quality assurance. The next section discusses the methods by which metals, and in some cases their alloys, can be applied to almost all other metals and alloys: electroplating, electroless plating, hot dipping, thermal spraying, cladding, pack cementation, vapor deposition, ion implantation, and laser processing. The last section focuses on nonmetallic inorganic coatings including ceramic coating materials, conversion coatings, and anodized coatings.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820043
EISBN: 978-1-62708-339-3
... or modified 300-series austenitic grades. A good example of a high-alloy stainless steel is 20Cb-3 (N08020), which was designed for improved resistance to sulfuric acid. This alloy has been used in many applications in a wide variety of chemical and allied industry environments. The presence of niobium...
Abstract
Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This chapter provides a basic understanding of grade designations, properties, and welding considerations of austenitic stainless steels. It also discusses general types of corrosive attack and their effects on service integrity as well as detection and control measures. The five corrosive attack mechanisms covered are intergranular corrosion, preferential attack associated with weld metal precipitates, pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480353
EISBN: 978-1-62708-318-8
... gamma TiAl (Ti-48Al-2Nb-2Cr at.%) (see Chapter 8, “Melting, Casting, and Powder Metallurgy,” in this book) for use in the fifth- and sixth-stage compressor. Heavier nickel-base superalloys were previously used in these high-temperature environments. The GEnx is a quieter engine with decreased fuel...
Abstract
This chapter describes the applications with the greatest impact on titanium consumption and global market trends. It explains where, how, and why titanium alloys are used in aerospace, automotive, chemical processing, medical, and military applications as well as power generating equipment, sporting goods, oil and gas production, and marine vessels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430204
EISBN: 978-1-62708-253-2
... Abstract This chapter discusses the effects of corrosion on boiler tube surfaces exposed to water and steam. It describes the process of corrosion, the formation of scale, and the oxides of iron from which it forms. It addresses the primary types of corrosion found in boiler environments...
Abstract
This chapter discusses the effects of corrosion on boiler tube surfaces exposed to water and steam. It describes the process of corrosion, the formation of scale, and the oxides of iron from which it forms. It addresses the primary types of corrosion found in boiler environments, including general corrosion, under-deposit corrosion, microbially induced corrosion, flow-accelerated corrosion, stress-assisted corrosion, erosion-corrosion, cavitation, oxygen pitting, stress-corrosion cracking, and caustic embrittlement. The discussion is supported by several illustrations and relevant case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280203
EISBN: 978-1-62708-267-9
... commonly used for steel and other metals are not required for superalloys. This is due to: The inherent corrosion resistance of superalloys in a wide range of environments The fact that the end use of superalloy parts frequently does not require a polished finish A frequent reason...
Abstract
Superalloys are susceptible to damage from a variety of surface contaminants. They may also require special surface finishes for subsequent processing steps such as coating applications. This chapter describes some of the cleaning and finishing procedures that have been developed for superalloys and how they work. It discusses the effect of metallic contaminants, tarnish, oxide, and scale and how they can be detected and removed. It also discusses chemical and mechanical surface finishing techniques and where they are used, and presents several application examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120307
EISBN: 978-1-62708-269-3
... associated with many natural environments, including body fluids. Because titanium metal has a high affinity for oxygen, the protective oxide film formed on the metal or its alloys can effectively reheal itself almost instantly when fresh metal surfaces are exposed to air or water. Under anhydrous conditions...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
... electrical/electronic connectors, integrated circuit lead frames, electronic components for severe, automotive, under-the-hood environments, circuit breaker components, and resistance welding equipment. Age-Hardening Alloys Age-hardening alloys are also included in the high-copper alloy category. Age...
Abstract
This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum, silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200007
EISBN: 978-1-62708-354-6
... dredge. Weight 35 ton The Mining Industry Steel castings are used extensively in mining equipment. The large scale equipment that must survive in hostile environments requires robust components that are most economically made as castings. The wear requirements of some equipment are best met...
Abstract
Steel castings are produced in thousands of designs for different applications. They fill needs in many industries, including transportation, construction machinery, earthmoving equipment, rolling mills, mining, oil and gas exploration, and power generation. This chapter touches upon the variety of applications for which steel castings can be supplied and the ranges of casting size and complexity. Photographs in this chapter provide an understanding of these applications, their size and complexity, and the types of cast steels produced.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400169
EISBN: 978-1-62708-258-7
... the type of material being prepared. Quite often, samples submitted to the metallographic laboratory require a detailed analysis that can be used as the basis to solve a problem. An example would be a part or component that fractured in a severe service environment. In this situation...
Abstract
This chapter instructs the metallographer on the basic skills required to prepare a polished metallographic specimen. It is organized in a chronological sequence starting with the information-gathering process on the material being investigated, then moving on to sectioning, mounting, grinding, and polishing processes, and ending with methods used to properly store metallographic specimens. The discussion covers the preparation procedures, the materials being investigated, and equipment used to perform these procedures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410151
EISBN: 978-1-62708-280-8
..., sodium silicate Binders Maximize bonding strength at high Dextrin, sulfite lye, and linseed oil Insulating and protective coatings Release and chilling coatings Base/primer coat — A diluted version for better adhesion Fine finish coating (fillers = talc and mica) Coarse...
Abstract
This chapter discusses the various factors pertinent to gravity permanent mold (GPM) castings, along with their advantages, limitations, and significance. The discussion covers the geometric factors, process and manufacturing elements, gating practices, and feeding principles of and pouring systems in GPM. The influences of mold coatings on GPM and low pressure permanent mold castings are described. The chapter also discusses various processes involved in the engineering of core boxes and cooling of GPM for casting integrity and cycle time control. It provides information on some of the processes involved in post-casting operations, namely de-coring and de-gating. The key design aspects for consideration in water quenching during the T6 heat treatment are reviewed. The chapter also provides information on two critical cycle events important in engineering at the manufacturing facility: tipper cycle planning and table or cell cycle planning.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.9781627082532
EISBN: 978-1-62708-253-2