Skip Nav Destination
Close Modal
Search Results for
Schottky defects
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-15 of 15
Search Results for Schottky defects
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Book Chapter
Crystalline Imperfections—Problems and Solutions
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020013
EISBN: 978-1-62708-389-8
... Frenkel defect, decrease the density Schottky defect, no effect on the density Schottky defect, increase the density Schottky defect, decrease the density Solution The answer is F. Problem 18: Defect in Substitutional Solid Solution An Al 2 O 3 crystal contains some...
Abstract
This chapter provides readers with worked solutions to more than 25 problems related to compositional impurities and structural defects. The problems deal with important issues and challenges such as the design of low-density steels, the causes and effects of distortion in different crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.9781627083898
EISBN: 978-1-62708-389-8
Book Chapter
Crystal Structure Defects and Imperfections
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020001
EISBN: 978-1-62708-389-8
... planes, and dislocation passage through precipitates. It also points out important structure-property correlations. antisite defects Burgers vector edge dislocations Frenkel defects grain size impurities mechanical properties pinning Schottky defects screw dislocations solid solution...
Abstract
Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.
Book Chapter
Crystalline Imperfections and Plastic Deformation
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240017
EISBN: 978-1-62708-251-8
... Abstract In a perfect crystalline structure, there is an orderly repetition of the lattice in every direction in space. Real crystals contain a considerable number of imperfections, or defects, that affect their physical, chemical, mechanical, and electronic properties. Defects play...
Abstract
In a perfect crystalline structure, there is an orderly repetition of the lattice in every direction in space. Real crystals contain a considerable number of imperfections, or defects, that affect their physical, chemical, mechanical, and electronic properties. Defects play an important role in processes such as deformation, annealing, precipitation, diffusion, and sintering. All defects and imperfections can be conveniently classified under four main divisions: point defects, line defects, planar defects, and volume defects. This chapter provides a detailed discussion on the causes, nature, and impact of these defects in metals. It also describes the mechanisms that cause plastic deformation in metals.
Book Chapter
Review of Metallic Structure
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420363
EISBN: 978-1-62708-310-2
..., crystalline imperfections, and the formation of surface or planar defects. It also discusses the use of X-ray diffraction for determining crystal structure. crystalline structures line defects metallic structure planar defects plastic deformation point defects volume defects X-ray diffraction...
Abstract
This appendix provides a detailed overview of the crystal structure of metals. It describes primary bonding mechanisms, space lattices and crystal systems, unit cell parameters, slip systems, and crystallographic planes and directions as well as plastic deformation mechanisms, crystalline imperfections, and the formation of surface or planar defects. It also discusses the use of X-ray diffraction for determining crystal structure.
Book Chapter
Structure of Metals and Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310001
EISBN: 978-1-62708-326-3
... of diffusion occurs by the simu taneous formation of a vacancy and an interstitial atom. Source: Ref 5 Fig. 21 Schottky mechanism of vacancy formation As noted, movement of atoms within a lattice structure also occurs by the two types of line defects: edge and screw dislocations ( Fig. 8...
Abstract
The building block of all matter, including metals, is the atom. This chapter initially provides information on atomic bonding and the crystal structure of metals and alloys, followed by a description of three crystal lattice structures of metals: face-centered cubic, hexagonal close-packed, and body-centered cubic. It then describes the four main divisions of crystal defects, namely point defects, line defects, planar defects, and volume defects. The chapter provides information on grain boundaries of metals, processes involved in atomic diffusion, and key properties of a solid solution. It also explains the aspects of a phase diagram that shows what phase or phases are present in the alloy under conditions of thermal equilibrium. Finally, a discussion on the applications of equilibrium phase diagrams is presented.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860047
EISBN: 978-1-62708-348-5
... Contributions from Transitions and Defects The specific heat for well-behaved (Debye-type) materials consists of contributions from lattice vibrations and from free electrons in the case of electrical conductors. The specific heats for these materials have a characteristic temperature relationship...
Abstract
Specific heat is a fundamental property that relates the total heat per unit mass added to a system to the resultant temperature change of the system. This chapter begins with the definition and historical development of specific heat. Thermodynamic and solid state relationships are presented which include discussions about lattice specific heat and the effects of magnetic and superconducting transitions. Data sources for practical applications and methods of estimating specific heat for materials are also included. The chapter concludes with a section concerning the measurement of specific heat at low temperatures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110413
EISBN: 978-1-62708-247-1
... the chapter on EDX.) This paper provides an overview of how to use the SEM for imaging integrated circuits. A minimum of SEM theory is covered while most of the article describes practical methods for getting a good image. Specialized SEM techniques for defect localization such as voltage contrast...
Abstract
This article provides an overview of how to use the scanning electron microscope (SEM) for imaging integrated circuits. The discussion covers the principles of operation and practical techniques of the SEM. The techniques include sample mounting, sample preparation, sputter coating, sample tilt and image composition, focus and astigmatism correction, dynamic focus and image correction, raster alignment, and adjusting brightness and contrast. The article also provides information on achieving ultra-high resolution in the SEM. It concludes with information on the general characteristics and applications of environmental SEM.
Book Chapter
Structure of Metals and Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060013
EISBN: 978-1-62708-261-7
... Abstract This chapter introduces many of the key concepts on which metallurgy is based. It begins with an overview of the atomic nature of matter and the forces that link atoms together in crystal lattice structures. It discusses the types of imperfections (or defects) that occur in the crystal...
Abstract
This chapter introduces many of the key concepts on which metallurgy is based. It begins with an overview of the atomic nature of matter and the forces that link atoms together in crystal lattice structures. It discusses the types of imperfections (or defects) that occur in the crystal structure of metals and their role in mechanical deformation, annealing, precipitation, and diffusion. It describes the concept of solid solutions and the effect of temperature on solubility and phase transformations. The chapter also discusses the formation of solidification structures, the use of equilibrium phase diagrams, the role of enthalpy and Gibb’s free energy in chemical reactions, and a method for determining phase compositions along the solidus and liquidus lines.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860163
EISBN: 978-1-62708-348-5
... metals: there is no such thing as a low temperature resistivity for these metals. Changes in impurity and defect content, which are minor from an industrial standpoint, may cause dramatic changes in the low-temperature resistivity. For example, recent measurements of commercial copper satisfying the CD...
Abstract
This chapter presents topics pertaining to resistance at cryogenic temperatures: measurement, the resistive mechanisms, and available data. The chapter also presents brief descriptions of the various mechanisms that are operative in producing resistance at low temperatures. The alloys discussed are the nondilute mixtures of metals. An introduction to low-temperature electrical properties of specific metals and alloys is included.
Book Chapter
Diffusion in Solids
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050001
EISBN: 978-1-62708-432-1
... for diffusing atoms. However, such vacancies should form in a way that does not alter the charge of the oxide. Here, Schottky and Frenkel defects assist diffusion, as the cations diffuse through cationic vacancies and the anions diffuse through the anionic vacancies. The activation energies may differ for both...
Abstract
A working knowledge of diffusion is necessary to understand and predict the behavior of metals and alloys during manufacturing and in certain types of service. This chapter covers the fundamentals of diffusion in solids and some of the applications in which diffusion plays a role. It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing, siliconizing, chromizing, vanadizing, and titanizing. It also discusses diffusion bonding and presents several approaches for dealing with oxide barrier problems.
Book
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860075
EISBN: 978-1-62708-348-5
... ( Collings, 1983 ). There are many modifications to the crystal lattice that must be accounted for in real solids: anisotropy, defects and impurities, the surface, polycrystallinity, transformations, and many others. Most theoretical developments treat these as minor perturbations on the general lattice...
Abstract
Specific heat and thermal expansion are closely related. Following a discussion on thermal expansion theory, methods of measurement techniques are presented along with their advantages and disadvantages. The results of the measurements are then summarized for three classes of materials: metallics, nonmetallics, and composites. Because predicting thermal expansion values for unmeasured or novel materials is useful, the chapter also describes the means of making educated guesses for low-temperature values. A short discussion on how thermal expansion data can be used is followed by a section describing where such data can be found.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090095
EISBN: 978-1-62708-266-2
... ). In this radiation-induced phenomenon there is no precipitation of chromium carbide and the chromium depletion is thought to occur by a process known as radiation-induced segregation. During the irradiation of an alloy, some constituents of the alloy migrate toward point defect sinks, such as grain boundaries...
Abstract
This chapter takes a practical approach to the problem of stress-corrosion cracking (SCC) in stainless steels, explaining how different application environments affect different grades of stainless steel. It describes the causes of stress-corrosion cracking in chloride, caustic, polythionic acid, and high-temperature environments and the correlating effects on austenitic, ferritic, duplex, martensitic, and precipitation hardening stainless steels and nickel-base alloys. It also discusses the contributing effects of sensitization and hydrogen embrittlement and the role of composition, microstructure, and thermal history. Sensitization is particularly detrimental to austenitic stainless steels, and in many cases, eliminating it will eliminate the susceptibility to SCC. The chapter includes an extensive amount of data and illustrations.